Piecewise-smooth Dynamical Systems

Piecewise-smooth Dynamical Systems

Author: Mario Bernardo

Publisher: Springer Science & Business Media

Published: 2008-01-01

Total Pages: 497

ISBN-13: 1846287081

DOWNLOAD EBOOK

This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.


Bifurcations in Piecewise-smooth Continuous Systems

Bifurcations in Piecewise-smooth Continuous Systems

Author: David John Warwick Simpson

Publisher: World Scientific

Published: 2010

Total Pages: 255

ISBN-13: 9814293849

DOWNLOAD EBOOK

Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail. NeimarkSacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems.


Continuous And Discontinuous Piecewise-smooth One-dimensional Maps: Invariant Sets And Bifurcation Structures

Continuous And Discontinuous Piecewise-smooth One-dimensional Maps: Invariant Sets And Bifurcation Structures

Author: Viktor Avrutin

Publisher: World Scientific

Published: 2019-05-28

Total Pages: 649

ISBN-13: 9811204713

DOWNLOAD EBOOK

The investigation of dynamics of piecewise-smooth maps is both intriguing from the mathematical point of view and important for applications in various fields, ranging from mechanical and electrical engineering up to financial markets. In this book, we review the attracting and repelling invariant sets of continuous and discontinuous one-dimensional piecewise-smooth maps. We describe the bifurcations occurring in these maps (border collision and degenerate bifurcations, as well as homoclinic bifurcations and the related transformations of chaotic attractors) and survey the basic scenarios and structures involving these bifurcations. In particular, the bifurcation structures in the skew tent map and its application as a border collision normal form are discussed. We describe the period adding and incrementing bifurcation structures in the domain of regular dynamics of a discontinuous piecewise-linear map, and the related bandcount adding and incrementing structures in the domain of robust chaos. Also, we explain how these structures originate from particular codimension-two bifurcation points which act as organizing centers. In addition, we present the map replacement technique which provides a powerful tool for the description of bifurcation structures in piecewise-linear and other form of invariant maps to a much further extent than the other approaches.


Modeling with Nonsmooth Dynamics

Modeling with Nonsmooth Dynamics

Author: Mike R. Jeffrey

Publisher: Springer Nature

Published: 2020-02-22

Total Pages: 104

ISBN-13: 3030359875

DOWNLOAD EBOOK

This volume looks at the study of dynamical systems with discontinuities. Discontinuities arise when systems are subject to switches, decisions, or other abrupt changes in their underlying properties that require a ‘non-smooth’ definition. A review of current ideas and introduction to key methods is given, with a view to opening discussion of a major open problem in our fundamental understanding of what nonsmooth models are. What does a nonsmooth model represent: an approximation, a toy model, a sophisticated qualitative capturing of empirical law, or a mere abstraction? Tackling this question means confronting rarely discussed indeterminacies and ambiguities in how we define, simulate, and solve nonsmooth models. The author illustrates these with simple examples based on genetic regulation and investment games, and proposes precise mathematical tools to tackle them. The volume is aimed at students and researchers who have some experience of dynamical systems, whether as a modelling tool or studying theoretically. Pointing to a range of theoretical and applied literature, the author introduces the key ideas needed to tackle nonsmooth models, but also shows the gaps in understanding that all researchers should be bearing in mind. Mike Jeffrey is a researcher and lecturer at the University of Bristol with a background in mathematical physics, specializing in dynamics, singularities, and asymptotics.


Piecewise Linear Control Systems

Piecewise Linear Control Systems

Author: Mikael K.-J. Johansson

Publisher: Springer

Published: 2003-07-01

Total Pages: 212

ISBN-13: 3540368019

DOWNLOAD EBOOK

2. Piecewise Linear Modeling . . . . . . . . . . . . . . . . . . . . . 9 2. 1 Model Representation . . . . . . . . . . . . . . . . . . . . . 9 2. 2 Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . 2. 3 Uncertainty Models . . . . . . . . . . . . . . . . . . . . . . 2. 4 Modularity and Interconnections . . . . . . . . . . . . . . 26 2. 5 Piecewise Linear Function Representations . . . . . . . . . 28 2. 6 Comments and References . . . . . . . . . . . . . . . . . . 30 3. Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3. 1 Equilibrium Points and the Steady State Characteristic . . 32 3. 2 Constraint Verification and Invariance . . . . . . . . . . . 35 3. 3 Detecting Attractive Sliding Modes on Cell Boundaries 37 3. 4 Comments and References . . . . . . . . . . . . . . . . . . 39 4. Lyapunov Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. 1 Exponential Stability . . . . . . . . . . . . . . . . . . . . . . 41 4. 2 Quadratic Stability . . . . . . . . . . . . . . . . . . . . . . . 42 4. 3 Conservatism of Quadratic Stability . . . . . . . . . . . . . 46 4. 4 From Quadratic to Piecewise Quadratic . . . . . . . . . . . 48 4. 5 Interlude: Describing Partition Properties . . . . . . . . . 51 4. 6 Piecewise Quadratic Lyapunov Functions . . . . . . . . . 55 4. 7 Analysis of Piecewise Linear Differential Inclusions . . . . 61 4. 8 Analysis of Systems with Attractive Sliding Modes . . . . 63 4. 9 Improving Computational Efficiency . . . . . . . . . . . . 66 4. 10 Piecewise Linear Lyapunov Functions . . . . . . . . . . . 72 4. 11 A Unifying View . . . . . . . . . . . . . . . . . . . . . . . . 77 4. 12 Comments and References . . . . . . . . . . . . . . . . . . 82 5. Dissipativity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 85 5. 1 Dissipativity Analysis via Convex Optimization . . . . . . 86 21 14 Contents Contents 5. 2 Computation of £2 induced Gain . . . . . . . . . . . . . . 88 5. 3 Estimation of Transient Energy . . . . . . . . . . . . . . . . 89 5. 4 Dissipative Systems with Quadratic Supply Rates . . . . . 91 5. 5 Comments and References . . . . . . . . . . . . . . . . . . 95 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6. 1 Quadratic Stabilization of Piecewise Linear" Systems . . . 97 6. 2 Controller Synthesis based on Piecewise Quadratics . . . 98 6. 3 Comments and References . . . . . . . . . . . . . . . . . . 105 7. Selected Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7. 1 Estimation of Regions of Attraction . . . . . . . . . . . . .


Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory

Author: Yuri Kuznetsov

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 648

ISBN-13: 1475739788

DOWNLOAD EBOOK

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.


Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Author: John Guckenheimer

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 475

ISBN-13: 1461211409

DOWNLOAD EBOOK

An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.


Advances in Mathematics and Applications

Advances in Mathematics and Applications

Author: Carlile Lavor

Publisher: Springer

Published: 2018-09-07

Total Pages: 408

ISBN-13: 3319940155

DOWNLOAD EBOOK

This book celebrates the 50th anniversary of the Institute of Mathematics, Statistics and Scientific Computing (IMECC) of the University of Campinas, Brazil, by offering reviews of selected research developed at one of the most prestigious mathematics institutes in Latin America. Written by senior professors at the IMECC, it covers topics in pure and applied mathematics and statistics ranging from differential geometry, dynamical systems, Lie groups, and partial differential equations to computational optimization, mathematical physics, stochastic process, time series, and more. A report on the challenges and opportunities of research in applied mathematics - a highly active field of research in the country - and highlights of the Institute since its foundation in 1968 completes this historical volume, which is unveiled in the same year that the International Mathematical Union (IMU) names Brazil as a member of the Group V of countries with the most relevant contributions in mathematics.


Handbook of Dynamical Systems

Handbook of Dynamical Systems

Author: B. Fiedler

Publisher: Gulf Professional Publishing

Published: 2002-02-21

Total Pages: 1099

ISBN-13: 0080532845

DOWNLOAD EBOOK

This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.


Dynamics and Bifurcations

Dynamics and Bifurcations

Author: Jack K. Hale

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 577

ISBN-13: 1461244269

DOWNLOAD EBOOK

In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.