Glial Physiology and Pathophysiology

Glial Physiology and Pathophysiology

Author: Alexei Verkhratsky

Publisher: John Wiley & Sons

Published: 2013-04-15

Total Pages: 0

ISBN-13: 9780470978528

DOWNLOAD EBOOK

Glial Physiology and Pathophysiology provides a comprehensive, advanced text on the biology and pathology of glial cells. Coverage includes: the morphology and interrelationships between glial cells and neurones in different parts of the nervous systems the cellular physiology of the different kinds of glial cells the mechanisms of intra- and inter-cellular signalling in glial networks the mechanisms of glial-neuronal communications the role of glial cells in synaptic plasticity, neuronal survival and development of nervous system the cellular and molecular mechanisms of metabolic neuronal-glial interactions the role of glia in nervous system pathology, including pathology of glial cells and associated diseases - for example, multiple sclerosis, Alzheimer's, Alexander disease and Parkinson's Neuroglia oversee the birth and development of neurones, the establishment of interneuronal connections (the 'connectome'), the maintenance and removal of these inter-neuronal connections, writing of the nervous system components, adult neurogenesis, the energetics of nervous tissue, metabolism of neurotransmitters, regulation of ion composition of the interstitial space and many, many more homeostatic functions. This book primes the reader towards the notion that nervous tissue is not divided into more important and less important cells. The nervous tissue functions because of the coherent and concerted action of many different cell types, each contributing to an ultimate output. This reaches its zenith in humans, with the creation of thoughts, underlying acquisition of knowledge, its analysis and synthesis, and contemplating the Universe and our place in it. An up-to-date and fully referenced text on the most numerous cells in the human brain Detailed coverage of the morphology and interrelationships between glial cells and neurones in different parts of the nervous system Describes the role of glial cells in neuropathology Focus boxes highlight key points and summarise important facts Companion website with downloadable figures and slides


Glial Neurobiology

Glial Neurobiology

Author: Alexei Verkhratsky

Publisher: John Wiley & Sons

Published: 2007-08-20

Total Pages: 230

ISBN-13: 9780470513071

DOWNLOAD EBOOK

"This volume is a very valuable and much needed contribution." –Quarterly Review of Biology AT LAST - A comprehensive, accessible textbook on glial neurobiology! Glial cells are the most numerous cells in the human brain but for many years have attracted little scientific attention. Neurophysiologists concentrated their research efforts instead, on neurones and neuronal networks because it was thought that they were the key elements responsible for higher brain function. Recent advances, however, indicate this isn’t exactly the case. Not only are astroglial cells the stem elements from which neurones are born, but they also control the development, functional activity and death of neuronal circuits. These ground-breaking developments have revolutionized our understanding of the human brain and the complex interrelationship of glial and neuronal networks in health and disease. Features of this book: an accessible introduction to glial neurobiology including an overview of glial cell function and its active role in neural processes, brain function and nervous system pathology an exploration of all the major types of glial cells including: the astrocytes, oligodendrocytes and microglia of the ACNS and Schwann cells of the peripheral nervous system; the book also presents a broad overview of glial receptors and ion channels an investigation into the role of glial cells in various types of brain diseases including stroke, neurodegenerative diseases such as Alzheimer's, Parkinson's and Alexander's disease, brain oedema, multiple sclerosis and many more a wealth of illustrations, including unique images from the authors' own libraries of images, describing the main features of glial cells Written by two leading experts in the field, Glial Neurobiology provides a concise, authoritative introduction to glial physiology and pathology for undergraduate/postgraduate neuroscience, biomedical, medical, pharmacy, pharmacology, and neurology, neurosurgery and physiology students. It is also an invaluable resource for researchers in neuroscience, physiology, pharmacology and pharmaceutics.


Enteric Glia

Enteric Glia

Author: Brian D. Gulbransen

Publisher: Biota Publishing

Published: 2014-07-01

Total Pages: 72

ISBN-13: 1615046615

DOWNLOAD EBOOK

The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography


Introduction to Neuroglia

Introduction to Neuroglia

Author: Alexei Verkhratsky

Publisher: Biota Publishing

Published: 2014-02-01

Total Pages: 74

ISBN-13: 1615046496

DOWNLOAD EBOOK

This book is the introduction to a series of e-books dedicated to the physiology and pathophysiology of neuroglia. The topic of neuroglia is generally overlooked in neuroscience curricula across the world, the main attention being focused on the description of excitability of neurons and neuronal networks. The neuroglia, being electrically non-excitable, are universally regarded as supportive cells which do not contribute to information processing. This oversimplified view, however, ignores the tremendous importance of brain homeostasis, which is imperative for the ongoing activity of neuronal networks. It also ignores the truth that specialization of neurons and their ability for rapid propagation and multi-level integration of signals become possible only because of delegation of homeostatic abilities to neuroglia. Furthermore, glial cells contribute to information processing as they can modulate neuronal synaptic transmission. Finally, neuroglia provide the only system of brain defense and as such these cells are intimately involved in all types of neuropathologies, and contribute to both neuroprotection and regeneration of the nervous system. The e-books in this series provide a platform for in-depth learning of all aspects of neuroglial cells function in health and disease.


Astrocytes in (Patho)Physiology of the Nervous System

Astrocytes in (Patho)Physiology of the Nervous System

Author: Vladimir Parpura

Publisher: Springer Science & Business Media

Published: 2008-12-11

Total Pages: 701

ISBN-13: 0387794921

DOWNLOAD EBOOK

Astrocytes were the original neuroglia that Ramón y Cajal visualized in 1913 using a gold sublimate stain. This stain targeted intermediate filaments that we now know consist mainly of glial fibrillary acidic protein, a protein used today as an astrocytic marker. Cajal described the morphological diversity of these cells with some ast- cytes surrounding neurons, while the others are intimately associated with vasculature. We start the book by discussing the heterogeneity of astrocytes using contemporary tools and by calling into question the assumption by classical neuroscience that neurons and glia are derived from distinct pools of progenitor cells. Astrocytes have long been neglected as active participants in intercellular communication and information processing in the central nervous system, in part due to their lack of electrical excitability. The follow up chapters review the “nuts and bolts” of ast- cytic physiology; astrocytes possess a diverse assortment of ion channels, neu- transmitter receptors, and transport mechanisms that enable the astrocytes to respond to many of the same signals that act on neurons. Since astrocytes can detect chemical transmitters that are released from neurons and can release their own extracellular signals there is an increasing awareness that they play physiological roles in regulating neuronal activity and synaptic transmission. In addition to these physiological roles, it is becoming increasingly recognized that astrocytes play critical roles during pathophysiological states of the nervous system; these states include gliomas, Alexander disease, and epilepsy to mention a few.


Brain Neurotrauma

Brain Neurotrauma

Author: Firas H. Kobeissy

Publisher: CRC Press

Published: 2015-02-25

Total Pages: 718

ISBN-13: 1466565993

DOWNLOAD EBOOK

With the contribution from more than one hundred CNS neurotrauma experts, this book provides a comprehensive and up-to-date account on the latest developments in the area of neurotrauma including biomarker studies, experimental models, diagnostic methods, and neurotherapeutic intervention strategies in brain injury research. It discusses neurotrauma mechanisms, biomarker discovery, and neurocognitive and neurobehavioral deficits. Also included are medical interventions and recent neurotherapeutics used in the area of brain injury that have been translated to the area of rehabilitation research. In addition, a section is devoted to models of milder CNS injury, including sports injuries.


Oligodendrocyte Physiology and Pathology Function

Oligodendrocyte Physiology and Pathology Function

Author: Markus Kipp

Publisher: MDPI

Published: 2021-01-06

Total Pages: 330

ISBN-13: 3039436899

DOWNLOAD EBOOK

The adult vertebrate central nervous system mainly consists of neurons, astrocytes, microglia cells, and oligodendrocytes. Oligodendrocytes, the myelin-forming cells of the CNS, are subjected to cell stress and subsequent death in a number of metabolic or inflammatory disorders, among which multiple sclerosis (MS) is included. This disease is associated with the development of large demyelinated plaques, oligodendrocyte destruction, and axonal degeneration, paralleled by the activation of astrocytes and microglia as well as the recruitment of peripheral immune cells to the site of tissue injury. Of note, viable oligodendrocytes and an intact myelin sheath are indispensable for neuronal health. For example, it has been shown that oligodendrocytes provide nutritional support to neurons, fast axonal transport depends on proper oligodendrocyte function, and mice deficient in mature myelin proteins eventually display severe neurodegeneration. This Special Issue contains a collection of highly relevant primary research articles as well as review articles focusing on the development, physiology, and pathology of the oligodendrocyte–axon–myelin unit.


Astrocyte

Astrocyte

Author: Maria Teresa Gentile

Publisher: BoD – Books on Demand

Published: 2018-03-21

Total Pages: 244

ISBN-13: 9535138855

DOWNLOAD EBOOK

A team of authors from prestigious academic schools contributed to draw up a project that would give a detailed account of astrocyte's morphology and physiology, examining thoroughly all the astrocyte's types; giving an accurate description of their morphology, location, function in the brain; and illustrating their physiology and pathology in terms of dealing with neurons through "gliotransmitters," ionic channels, and membrane receptors expression. This book gives an overview of the crucial role of astrocytes in the physiology of the CNS and in the pathogenesis of several CNS disorders suggesting that the shift from a neurocentric view to one that incorporates astrocytes in disease models for drug discovery is a critical step in renewing drug development strategies to treat neurodegenerative diseases.