Physiological Bases for Maize Improvement

Physiological Bases for Maize Improvement

Author: Gustavo A Slafer

Publisher: CRC Press

Published: 2024-11-01

Total Pages: 252

ISBN-13: 104027935X

DOWNLOAD EBOOK

Improve the quantity and quality of maize crops in any environment!While isolated examples of the physiological bases for genetic improvement of maize yield can be found in several papers (most of which are cited in this book), there has not, until now, been a single volume that delivers and clarifies all of the available information in this field! Today, Physiological Bases for Maize Improvement offers scientists and crop growers a thorough and concise guide to recent literature and developments about increasing the crop efficiency of corn. In Physiological Bases for Maize Improvement, international experts in the field discuss and analyze methods of effectively improving crop breeding and producing better and larger yields of corn.Physiological Bases for Maize Improvement delivers clear, thorough discussions of: improving maize grain yield potential in a cool environment improving maize grain yield potential in the tropics processes affecting maize grain yield potential in temperate conditions maize improvement for drought-limited conditions apical dominance, herbivory resistance, and competitive ability the use of simulation models for crop improvement . . . and much more! With this book, you will find ways to improve maize crops in a variety of countries and climates and understand the importance of kernel numbers and kernel growth to the overall yield. Containing current research and case studies, Physiological Bases for Maize Improvement provides you with vital strategies that will improve the quality and quantity of corn and increase plant functionality and fitness.


Crop Physiology Case Histories for Major Crops

Crop Physiology Case Histories for Major Crops

Author: Victor Sadras

Publisher: Academic Press

Published: 2020-12-05

Total Pages: 780

ISBN-13: 0128191953

DOWNLOAD EBOOK

Crop Physiology: Case Histories of Major Crops updates the physiology of broad-acre crops with a focus on the genetic, environmental and management drivers of development, capture and efficiency in the use of radiation, water and nutrients, the formation of yield and aspects of quality. These physiological process are presented in a double context of challenges and solutions. The challenges to increase plant-based food, fodder, fiber and energy against the backdrop of population increase, climate change, dietary choices and declining public funding for research and development in agriculture are unprecedented and urgent. The proximal technological solutions to these challenges are genetic improvement and agronomy. Hence, the premise of the book is that crop physiology is most valuable when it engages meaningfully with breeding and agronomy. With contributions from 92 leading scientists from around the world, each chapter deals with a crop: maize, rice, wheat, barley, sorghum and oat; quinoa; soybean, field pea, chickpea, peanut, common bean, lentil, lupin and faba bean; sunflower and canola; potato, cassava, sugar beet and sugarcane; and cotton. - A crop-based approach to crop physiology in a G x E x M context - Captures the perspectives of global experts on 22 crops


Crop Physiology

Crop Physiology

Author: Victor Sadras

Publisher: Elsevier

Published: 2014-09-17

Total Pages: 566

ISBN-13: 0124169791

DOWNLOAD EBOOK

From climate change to farming systems to genetic modification of organisms, Crop Physiology, Second Edition provides a practical tool for understanding the relationships and challenges of successful cropping. With a focus on genetic improvement and agronomy, this book addresses the challenges of environmentally sound production of bulk and quality food, fodder, fiber, and energy which are of ongoing international concern. The second edition of Crop Physiology continues to provide a unique analysis of these topics while reflecting important changes and advances in the relevant science and implementation systems. Contemporary agriculture confronts the challenge of increasing demand in terms of quantitative and qualitative production targets. These targets have to be achieved against the background of soil and water scarcity, worldwide and regional shifts in the patterns of land use driven by both climate change and the need to develop crop-based sources of energy, and the environmental and social aspects of agricultural sustainability. - Provides a view of crop physiology as an active source of methods, theories, ideas, and tools for application in genetic improvement and agronomy - Written by leading scientists from around the world - Combines environment-specific cropping systems and general principles of crop science to appeal to advanced students, and scientists in agriculture-related disciplines, from molecular sciences to natural resources management


Physiology and Biotechnology Integration for Plant Breeding

Physiology and Biotechnology Integration for Plant Breeding

Author: Henry T. Nguyen

Publisher: CRC Press

Published: 2004-01-14

Total Pages: 654

ISBN-13: 9780203022030

DOWNLOAD EBOOK

Global demand for wheat, rice, corn, and other essential grains is expected to steadily rise over the next twenty years. Meeting this demand by increasing production through increased land use is not very likely; and while better crop management may make a marginal difference, most agriculture experts agree that this anticipated deficit must be m


The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops

The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops

Author: Malcolm J. Hawkesford

Publisher: John Wiley & Sons

Published: 2011-06-20

Total Pages: 512

ISBN-13: 047096068X

DOWNLOAD EBOOK

Efforts to increase efficient nutrient use by crops are of growing importance as the global demand for food, fibre and fuel increases and competition for resources intensifies. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops provides both a timely summary of the latest advances in the field as well as anticipating directions for future research. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops bridges the gap between agronomic practice and molecular biology by linking underpinning molecular mechanisms to the physiological and agronomic aspects of crop yield. These chapters provide an understanding of molecular and physiological mechanisms that will allow researchers to continue to target and improve complex traits for crop improvement. Written by leading international researchers, The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops will be an essential resource for the crop science community for years to come. Special Features: coalesces current knowledge in the areas of efficient acquisition and utilization of nutrients by crop plants with emphasis on modern developments addresses future directions in crop nutrition in the light of changing climate patterns including temperature and water availability bridges the gap between traditional agronomy and molecular biology with focus on underpinning molecular mechanisms and their effects on crop yield includes contributions from a leading team of global experts in both research and practical settings


Plant Breeding Reviews

Plant Breeding Reviews

Author: Jules Janick

Publisher: John Wiley & Sons

Published: 2011-02-02

Total Pages: 320

ISBN-13: 9780470880562

DOWNLOAD EBOOK

Plant Breeding Reviews presents state-of-the-art reviews on plant breeding and genetics covering horticultural, agronomic and forestry crops, incorporating both traditional and molecular methods. The contributions are authored by world authorities, anonymously reviewed, and edited by Professor Jules Janick of Purdue University, USA. The series is an indispensible resource for crop breeders, plant scientists, and teachers involved in crop improvement and genetic resources.


Molecular Genetic Approaches to Maize Improvement

Molecular Genetic Approaches to Maize Improvement

Author: Alan L. Kriz

Publisher: Springer Science & Business Media

Published: 2008-11-14

Total Pages: 370

ISBN-13: 3540689222

DOWNLOAD EBOOK

During the past decade, there has been tremendous progress in maize biotechnology. This volume provides an overview of our current knowledge of maize molecular genetics, how it is being used to improve the crop, and future possibilities for crop enhancement. Several chapters deal with genetically engineered traits that are currently, or soon will be, in commercial production. Technical approaches for introducing novel genes into the maize genome, the regeneration of plants from transformed cells, and the creation of transgenic lines for field production are covered. Further, the authors describe how molecular genetic techniques are being used to identify genes and characterize their function, and how these procedures are utilized to develop elite maize germplasm. Moreover, molecular biology and physiological studies of corn as a basis for the improvement of its nutritional and food-making properties are included. Finally, the growing use of corn as biomass for energy production is discussed.


Crop Production for Agricultural Improvement

Crop Production for Agricultural Improvement

Author: Muhammad Ashraf

Publisher: Springer Science & Business Media

Published: 2012-06-02

Total Pages: 787

ISBN-13: 9400741162

DOWNLOAD EBOOK

In the recent years, the looming food scarcity problem has highlighted plant sciences as an emerging discipline committed to devise new strategies for enhanced crop productivity. The major factors causing food scarcity are biotic and abiotic stresses such as plant pathogens, salinity, drought, flooding, nutrient deficiency or toxicity which substantially limit crop productivity world-wide. In this scenario, strategies should be adopted to achieve maximum productivity and economic crop returns. In this book we have mainly focused on physiological, biochemical, molecular and genetic bases of crop development and related approaches that can be used for crop improvement under environmental adversaries. In addition, the adverse effects of different biotic (diseases, pathogens etc.) and abiotic (salinity, drought, high temperatures, metals etc) stresses on crop development and the potential strategies to enhance crop productivity under stressful environments are also discussed.


Durum Wheat Breeding

Durum Wheat Breeding

Author: Conxita Royo

Publisher: CRC Press

Published: 2005-11-07

Total Pages: 571

ISBN-13: 1482277883

DOWNLOAD EBOOK

Is your knowledge about this important grain crop up to date? This comprehensive two-volume resource reviews the latest advances in scientific and technical knowledge for durum wheat breeding. With a scope of coverage that includes genetics and molecular biology, plant and crop physiology, and breeding strategies and methodology, Dur


Drought phenotyping in crops: From theory to practice

Drought phenotyping in crops: From theory to practice

Author: Philippe Monneveux

Publisher: Frontiers E-books

Published: 2014-02-12

Total Pages: 238

ISBN-13: 2889191818

DOWNLOAD EBOOK

This topic is a unique attempt to simultaneously tackle theoretical and practical aspects in drought phenotyping, through both crop-specific and cross-cutting approaches. It is designed for – and will be of use to – practitioners and postgraduate students in plant science, who are grappling with the challenging task of evaluating germplasm performance under different water regimes. In Part I, different methodologies are presented for accurately characterising environmental conditions, implementing trials, and capturing and analysing the information this generates, regardless of the crop. Part II presents the state-of-art in research on adaptation to drought, and recommends specific protocols to measure different traits in major food crops (focusing on particular cereals, legumes and clonal crops). The topic is part of the CGIAR Generation Challenge Programme’s efforts to disseminate crop research information, tools and protocols, for improving characterisation of environments and phenotyping conditions. The goal is to enhance expertise in testing locations, and to stimulate the development and use of traits related to drought tolerance, as well as innovative protocols for crop characterisation and breeding.