Physics of Structurally Disordered Solids

Physics of Structurally Disordered Solids

Author: Shashanka Mitra

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 788

ISBN-13: 146840850X

DOWNLOAD EBOOK

Structurally disordered solids are characterized by their lack of spatial order that is evidenced by the great variety of ordered solids. The former class of materials is commonly termed amorphous or glassy, the latter crystalline. However, both classes share, many of the other physical properties of solids, e. g. , me chanical stability, resistance to shear stress, etc. The traditional macroscopic distinction between the crystalline and the glassy states is that while the former has a fixed melting point, the latter does not. However, with the availability and production of a large number of materials in both crystalline and amorphous states, and their easy inter-convertability, simple de finitions are not possible or at best imprecise. For the present purpose, it is sufficient to say that in contrast to the crystalline state, in which the posi tions of atoms are fixed into adefinite structure, ex cept for small thermal vibrations, the amorphous state of the same material displays varying degrees of de parture from this fixed structure. The amorphous state almost always shows no long range order. Short range order, up to several neighbors, may often be retained, although averaged considerably around their crystalline values. It is generally believed that the amorphous state is a metastable one with respect to the crystal line ordered state, and the conversion to the crystal line state may or may not be easy depending on the na ture of the material, e. g.


Disordered Materials

Disordered Materials

Author: Paolo M. Ossi

Publisher: Springer Science & Business Media

Published: 2003

Total Pages: 306

ISBN-13: 9783540413288

DOWNLOAD EBOOK

This self-contained textbook aims to introduce the physics of structurally disordered condensed systems at the level of advanced undergraduate and graduate students. The topics discussed include the geometry and symmetries of the building blocks commonly used to obtain atomic structures, the various kinds of disorder, the phenomenology and the main theories of the glass transition, investigation of the structure of amorphous systems, the dependence of system structure on its dimensions (clusters), and the case of positional order in the absence of translational order (quasicrystals).


Glassy Materials and Disordered Solids

Glassy Materials and Disordered Solids

Author: Kurt Binder

Publisher: World Scientific

Published: 2011

Total Pages: 562

ISBN-13: 9814350176

DOWNLOAD EBOOK

This book gives a pedagogical introduction to the physics of amorphous solids and related disordered condensed matter systems. Important concepts from statistical mechanics such as percolation, random walks, fractals and spin glasses are explained. Using these concepts, the common aspects of these systems are emphasized, and the current understanding of the glass transition and the structure of glasses are concisely reviewed. This second edition includes new material on emerging topics in the field of disordered systems such as gels, driven systems, dynamical heterogeneities, growing length scales etc. as well as an update of the literature in this rapidly developing field.


Metals, Superconductors, Magnetic Materials, Liquids Disordered Solids, Optical Properties

Metals, Superconductors, Magnetic Materials, Liquids Disordered Solids, Optical Properties

Author:

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 487

ISBN-13: 0444599894

DOWNLOAD EBOOK

Dynamical Properties of Solids, Volume 4: Disordered Solids, Optical Properties focuses on the lattice dynamical properties of noncrystalline and disordered solids and optical properties of crystalline solids. The selection first elaborates on the vibrational properties of amorphous solids and computer experiments and disordered solids. Topics include thermal and electrical transport, density of states, numerical methods, localization, low frequency modes, and theoretical background. The text then takes a look at the morphic effects in lattice dynamics, including normal coordinate formalism, electric-field-induced infrared absorption and Raman scattering, stress-induced changes in the phonon frequencies, and the effect of time reversal on the symmetry of the long-wavelength optical. The manuscript examines the absorption of infrared radiation by multiphonon processes in solids, as well as theoretical studies of infrared absorption in the multiphonon region and experimental studies of infrared absorption at frequencies above the characteristic lattice vibration frequencies. The selection is a dependable source of data for researchers interested in the optical properties of crystalline solids and lattice dynamical properties of noncrystalline and disordered solids.


Condensed Matter: Disordered Solids

Condensed Matter: Disordered Solids

Author: Toshio Itami

Publisher: World Scientific

Published: 1995-08-31

Total Pages: 477

ISBN-13: 981450145X

DOWNLOAD EBOOK

This book deals with different aspects of the structure and properties of disordered materials. Whenever the normal state of matter is affected by internal or external agencies and new states are developed, it is generally observed that the new materials possess disordered structures. However, some characteristics (such as the electronic and ionic) remain similar to those of crystalline solids. Such isotropic materials are also termed disordered solids.This book surveys the physics of materials like non transition-transition metals and alloys in their solid and liquid phases, liquid-amorphous solids and materials with super structures like fullerene lattices etc. The advancements in these materials which possess unusual physical properties provide exciting possibilities for technology and industry. Up-to-date investigations about theoretical and experimental techniques are presented here. The reviews on different materials were prepared by renowned experts in the corresponding areas.


Defects and Their Structure in Nonmetallic Solids

Defects and Their Structure in Nonmetallic Solids

Author: B. Henderson

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 502

ISBN-13: 1468428020

DOWNLOAD EBOOK

The Advanced Study Institute of which this volume is the proceedings was held at the University of Exeter during 24 August to 6 September 1975. There were seventy participants of whom eighteen were lecturers and members of the advisory committee. All NATO countries except Holland, Iceland and Portugal were re presented. In addition a small number of participants came from non-NATO countries Japan, Ireland and Switzerland. An aim of the organising committee was to bring together scientists of wide interests and expertise in the defect structure of insulators and semiconductors. Thus major emphases in the pro gramme concerned the use of spectroscopy and microscopy in revealing the structure of point defects and their aggregates, line defects as well as planar and volume defects. The lectures revealed that in general little is known of the fate of the interstitial in most irradiated solids. Nor are the dynamic properties of defects under stood in sufficient detail that one can state how point defects cluster and eventually become macroscopic defects. Although this book faithfully reproduces the material covered by the invited speakers, it does not really follow the flow of the lectures. This is because it seemed advisable for each lecturer to provide a single self-contained and authoritative manuscript, rather than a series of short articles corresponding to the lectures.


Introduction to Solid-State Theory

Introduction to Solid-State Theory

Author: Otfried Madelung

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 501

ISBN-13: 3642618855

DOWNLOAD EBOOK

Introduction to Solid-State Theory is a textbook for graduate students of physics and materials science. It also provides the theoretical background needed by physicists doing research in pure solid-state physics and its applications to electrical engineering. The fundamentals of solid-state theory are based on a description by delocalized and localized states and - within the concept of delocalized states - by elementary excitations. The development of solid-state theory within the last ten years has shown that by a systematic introduction of these concepts, large parts of the theory can be described in a unified way. This form of description gives a "pictorial" formulation of many elementary processes in solids, which facilitates their understanding.