Physical Foundations of Materials Science

Physical Foundations of Materials Science

Author: Günter Gottstein

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 511

ISBN-13: 3662092913

DOWNLOAD EBOOK

In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them transmission electron microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.


Foundations of Materials Science and Engineering

Foundations of Materials Science and Engineering

Author: William F. Smith

Publisher:

Published: 2011

Total Pages: 1070

ISBN-13: 9780071311144

DOWNLOAD EBOOK

Smith/Hashemi's Foundations of Materials Science and Engineering, 5/e provides an eminently readable and understandable overview of engineering materials for undergraduate students. This edition offers a fully revised chemistry chapter and a new chapter on biomaterials as well as a new taxonomy for homework problems that will help students and instructors gauge and set goals for student learning. Through concise explanations, numerous worked-out examples, a wealth of illustrations & photos, and a brand new set of online resources, the new edition provides the most student-friendly introduction to the science & engineering of materials. The extensive media package available with the text provides Virtual Labs, tutorials, and animations, as well as image files, case studies, FE Exam review questions, and a solutions manual and lecture PowerPoint files for instructors.


Epitaxy

Epitaxy

Author: Marian A. Herman

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 530

ISBN-13: 3662070642

DOWNLOAD EBOOK

In a uniform and comprehensive manner the authors describe all the important aspects of the epitaxial growth processes of solid films on crystalline substrates, e.g. processes in which atoms of the growing film mimic the arrangement of the atoms of the substrate. Emphasis is put on sufficiently fundamental and unequivocal presentation of the subject in the form of an easy-to-read review. A large part of this book focuses on the problems of heteroepitaxy. The most important epitaxial growth techniques which are currently widely used in basic research as well as in manufacturing processes of devices are presented and discussed in detail.


Fundamentals of Materials Science

Fundamentals of Materials Science

Author: Eric J. Mittemeijer

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 754

ISBN-13: 3030600564

DOWNLOAD EBOOK

This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state physics and solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid background against which more specialized texts can be studied, covering the necessary breadth of key topics such as crystallography, structure defects, phase equilibria and transformations, diffusion and kinetics, and mechanical properties. The success of the first edition has led to this updated and extended second edition, featuring detailed discussion of electron microscopy, supermicroscopy and diffraction methods, an extended treatment of diffusion in solids, and a separate chapter on phase transformation kinetics. “In a lucid and masterly manner, the ways in which the microstructure can affect a host of basic phenomena in metals are described.... By consistently staying with the postulated topic of the microstructure - property relationship, this book occupies a singular position within the broad spectrum of comparable materials science literature .... it will also be of permanent value as a reference book for background refreshing, not least because of its unique annotated intermezzi; an ambitious, remarkable work.” G. Petzow in International Journal of Materials Research. “The biggest strength of the book is the discussion of the structure-property relationships, which the author has accomplished admirably.... In a nutshell, the book should not be looked at as a quick ‘cook book’ type text, but as a serious, critical treatise for some significant time to come.” G.S. Upadhyaya in Science of Sintering. “The role of lattice defects in deformation processes is clearly illustrated using excellent diagrams . Included are many footnotes, ‘Intermezzos’, ‘Epilogues’ and asides within the text from the author’s experience. This ..... soon becomes valued for the interesting insights into the subject and shows the human side of its history. Overall this book provides a refreshing treatment of this important subject and should prove a useful addition to the existing text books available to undergraduate and graduate students and researchers in the field of materials science.” M. Davies in Materials World.


Materials Science and Engineering

Materials Science and Engineering

Author: William D. Callister, Jr.

Publisher: John Wiley & Sons

Published: 2020-06-23

Total Pages: 994

ISBN-13: 1119721776

DOWNLOAD EBOOK

Materials Science and Engineering: An Introduction promotes student understanding of the three primary types of materials (metals, ceramics, and polymers) and composites, as well as the relationships that exist between the structural elements of materials and their properties. The 10th edition provides new or updated coverage on a number of topics, including: the Materials Paradigm and Materials Selection Charts, 3D printing and additive manufacturing, biomaterials, recycling issues and the Hall effect.


Ferroelectric Phenomena in Crystals

Ferroelectric Phenomena in Crystals

Author: Boris A. Strukov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 311

ISBN-13: 3642602932

DOWNLOAD EBOOK

The expansion of the application of ferroelectric crystals in engineering as well as of a number of fundamental problems of solid-state physics, which have not yet been solved and which bear a direct relation to ferro electricity, has lately stimulated much interest in the problem of ferroelectricity. In courses of solid-state physics ferroelectricity is studied today along with traditional disciplines, such as magnetism, superconductivity, and 'semiconducting phe nomena. Moreover, new specialities have been born concerned directly with the development and utilization of ferroelectric material~ in optics, acous tics, computer technology, and capacitor engineering. Special courses in the physics of ferroelectrics are read in a number of colleges and universities. The study of the nature of ferro electricity has currently reached such a level of development that we may speak of having gained a rather deep insight into the physical essence of a number of phenomena, which contribute to the generation of a spontaneous electric polarization in crystals. It is exactly at this level that it has become possible to single out that part of the problem, the physical picture of which can be depicted in a rather unsophisticated manner and which is the foundation for the construction of a building of "complete understanding".


Émilie Du Châtelet and the Foundations of Physical Science

Émilie Du Châtelet and the Foundations of Physical Science

Author: Katherine Brading

Publisher: Routledge

Published: 2019-01-15

Total Pages: 180

ISBN-13: 0429787197

DOWNLOAD EBOOK

The centerpiece of Émilie Du Châtelet’s philosophy of science is her Foundations of Physics, first published in 1740. The Foundations contains epistemology, metaphysics, methodology, mechanics, and physics, including such pressing issues of the time as whether there are atoms, the appropriate roles of God and of hypotheses in scientific theorizing, how (if at all) bodies are capable of acting on one another, and whether gravity is an action-at-a-distance force. Du Châtelet sought to resolve these issues within a single philosophical framework that builds on her critique and appraisal of all the leading alternatives (Cartesian, Newtonian, Leibnizian, and so forth) of the period. The text is remarkable for being the first to attempt such a synthetic project, and even more so for the accessibility and clarity of the writing. This book argues that Du Châtelet put her finger on the central problems that lay at the intersection of physics and metaphysics at the time, and tackled them drawing on the most up-to-date resources available. It will be a useful source for students and scholars interested in the history and philosophy of science, and in the impact of women philosophers in the early modern period.


Materials

Materials

Author: Witold Brostow

Publisher: John Wiley & Sons

Published: 2016-09-06

Total Pages: 686

ISBN-13: 1119281008

DOWNLOAD EBOOK

Presents a fully interdisciplinary approach with a stronger emphasis on polymers and composites than traditional materials books Materials science and engineering is an interdisciplinary field involving the properties of matter and its applications to various areas of science and engineering. Polymer materials are often mixed with inorganic materials to enhance their mechanical, electrical, thermal, and physical properties. Materials: Introduction and Applications addresses a gap in the existing textbooks on materials science. This book focuses on three Units. The first, Foundations, includes basic materials topics from Intermolecular Forces and Thermodynamics and Phase Diagrams to Crystalline and Non-Crystalline Structures. The second Units, Materials, goes into the details of many materials including Metals, Ceramics, Organic Raw Materials, Polymers, Composites, Biomaterials, and Liquid Crystals and Smart Materials. The third and final unit details Behavior and Properties including Rheological, Mechanical, Thermophysical, Color and Optical, Electrical and Dielectric, Magnetic, Surface Behavior and Tribology, Materials, Environment and Sustainability, and Testing of Materials. Materials: Introduction and Applications features: Basic and advanced Materials concepts Interdisciplinary information that is otherwise scattered consolidated into one work Links to everyday life application like electronics, airplanes, and dental materials Certain topics to be discussed in this textbook are more advanced. These will be presented in shaded gray boxes providing a two-level approach. Depending on whether you are a student of Mechanical Engineering, Electrical Engineering, Engineering Technology, MSE, Chemistry, Physics, etc., you can decide for yourself whether a topic presented on a more advanced level is not important for you—or else essential for you given your professional profile Witold Brostow is Regents Professor of Materials Science and Engineering at the University of North Texas. He is President of the International Council on Materials Education and President of the Scientific Committee of the POLYCHAR World Forum on Advanced Material (42 member countries). He has three honorary doctorates and is a Member of the European Academy of Sciences, Member of the National Academy of Sciences of Mexico, Foreign Member of the National Academy of Engineering of Georgia in Tbilisi and Fellow of the Royal Society of Chemistry in London. His publications have been cited more than 7200 times. Haley Hagg Lobland is the Associate Director of LAPOM at the University of North Texas. She is a Member of the POLYCHAR Scientific Committeee. She has received awards for her research presented at conferences in: Buzios, Rio de Janeiro, Brazil; NIST, Frederick, Maryland; Rouen, France; and Lviv, Ukraine. She has lectured in a number of countries including Poland and Spain. Her publications include joint ones with colleagues in Egypt, Georgia, Germany, India, Israel, Mexico, Poland, Turkey and United Kingdom.