This book studies the fundamental concept of hydrodynamics as part of theoretical physics and demonstrates the connection of macroscopic approach with the description of properties of fluid motion and microscopic kinetic theory. It also presents recent investigations in instabilities and turbulence theory.
Let us begin by quoting from the Preface to the author's Statistical Physics (Moscow, Nauka 1982; also published in English by Harwood in 1986): '''My God! Yet another book on statistical physics! There's no room on my bookshelves left!' Such emotionsare quite understandable. Beforejumping to conclusions, however, it would be worthwhile to read the Introduction and look through the table of contents. Then the reader will find that this book is totally different from the existing courses, fundamental and concise. ... We do not use the conventional division into statistical theories ofequilibrium and nonequilibrium states. Rather than that, the theory ofnonequilibrium state is the basis and the backbone oftheentirecourse. ... This approach allows us to develop a unified method for statistical description ofa very broadclassofsystems. ... The author certainly does not wish to exaggerate the advantages of the book, considering it asjustthe first attemptto create a textbookofa new kind." The next step in this direction was the author's Turbulent Motion and the Structure of Chaos (Moscow, Nauka 1990; Kluwer Academic Publishers 1991). This book is subtitled A New Approach to the Statistical Theory of Open Systems. Naturally, the "new approach" is not meant to defy the consistent and efficient methods of the conventional statistical theory; itshould be regarded as auseful reinforcementofsuch methods.
This volume focuses on progress in applying the lattice gas approach to partial differential equations that arise in simulating the flow of fluids.Lattice gas methods are new parallel, high-resolution, high-efficiency techniques for solving partial differential equations. This volume focuses on progress in applying the lattice gas approach to partial differential equations that arise in simulating the flow of fluids. It introduces the lattice Boltzmann equation, a new direction in lattice gas research that considerably reduces fluctuations.The twenty-seven contributions explore the many available software options exploiting the fact that lattice gas methods are completely parallel, which produces significant gains in speed. Following an overview of work done in the past five years and a discussion of frontiers, the chapters describe viscosity modeling and hydrodynamic mode analyses, multiphase flows and porous media, reactions and diffusion, basic relations and long-time correlations, the lattice Boltzmann equation, computer hardware, and lattice gas applications.Gary D. Doolen is Acting Director of the Center for Nonlinear Studies at Los Alamos National Laboratory.
Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. The topics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful reference text for applied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems.
By bringing together various ideas and methods for extracting the slow manifolds, the authors show that it is possible to establish a more macroscopic description in nonequilibrium systems. The book treats slowness as stability. A unifying geometrical viewpoint of the thermodynamics of slow and fast motion enables the development of reduction techniques, both analytical and numerical. Examples considered in the book range from the Boltzmann kinetic equation and hydrodynamics to the Fokker-Planck equations of polymer dynamics and models of chemical kinetics describing oxidation reactions. Special chapters are devoted to model reduction in classical statistical dynamics, natural selection, and exact solutions for slow hydrodynamic manifolds. The book will be a major reference source for both theoretical and applied model reduction. Intended primarily as a postgraduate-level text in nonequilibrium kinetics and model reduction, it will also be valuable to PhD students and researchers in applied mathematics, physics and various fields of engineering.
This book offers an interdisciplinary theoretical approach based on non-equilibrium statistical thermodynamics and control theory for mathematically modeling shock-induced out-of-equilibrium processes in condensed matter. The book comprises two parts. The first half of the book establishes the theoretical approach, reviewing fundamentals of non-equilibrium statistical thermodynamics and control theory of adaptive systems. The latter half applies the presented approach to a problem on shock-induced plane wave propagation in condensed matter. The result successfully reproduces the observed feature of waveform propagation in experiments, which conventional continuous mechanics cannot access. Further, the consequent stress–strain relationships derived with relaxation and inertia effect in elastic–plastic transition determines material properties in transient regimes.
This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respect to macroscopic fluxes or thermodynamic forces. Both irreversible Boltzmann and generalized Boltzmann equations are used for deriving theories of irreversible transport equations and generalized hydrodynamic equations, which rigorously conform to the tenet. All observables described by the so-formulated theories therefore also strictly obey the tenet.
In this Brief, authors introduce the advance in theoretical and experimental techniques for determining the thermal conductivity in nanomaterials, and focus on review of their recent theoretical studies on the thermal properties of silicon–based nanomaterials, such as zero–dimensional silicon nanoclusters, one–dimensional silicon nanowires, and graphenelike two–dimensional silicene. The specific subject matters covered include: size effect of thermal stability and phonon thermal transport in spherical silicon nanoclusters, surface effects of phonon thermal transport in silicon nanowires, and defects effects of phonon thermal transport in silicene. The results obtained are supplemented by numerical calculations, presented as tables and figures. The potential applications of these findings in nanoelectrics and thermoelectric energy conversion are also discussed. In this regard, this Brief represents an authoritative, systematic, and detailed description of the current status of phonon thermal transport in silicon–based nanomaterials. This Brief should be a highly valuable reference for young scientists and postgraduate students active in the fields of nanoscale thermal transport and silicon-based nanomaterials.
Largely self contained, this expert three-part treatment focuses on the dynamics of nonradiating fluids; explores the physics of radiation, radiation transport, and the dynamics of radiating fluids; and offers a brief appendix that explains the use of tensor concepts in equations related to the transition of ordinary fluids to relativistic fluids to radiation. 1984 edition.