Physical Components of Tensors

Physical Components of Tensors

Author: Wolf Altman

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 200

ISBN-13: 1482263831

DOWNLOAD EBOOK

Illustrating the important aspects of tensor calculus, and highlighting its most practical features, Physical Components of Tensors presents an authoritative and complete explanation of tensor calculus that is based on transformations of bases of vector spaces rather than on transformations of coordinates. Written with graduate students, professors, and researchers in the areas of elasticity and shell theories in mind, this text focuses on the physical and nonholonomic components of tensors and applies them to the theories. It establishes a theory of physical and anholonomic components of tensors and applies the theory of dimensional analysis to tensors and (anholonomic) connections. This theory shows the relationship and compatibility among several existing definitions of physical components of tensors when referred to nonorthogonal coordinates. The book assumes a basic knowledge of linear algebra and elementary calculus, but revisits these subjects and introduces the mathematical backgrounds for the theory in the first three chapters. In addition, all field equations are also given in physical components as well. Comprised of five chapters, this noteworthy text: Deals with the basic concepts of linear algebra, introducing the vector spaces and the further structures imposed on them by the notions of inner products, norms, and metrics Focuses on the main algebraic operations for vectors and tensors and also on the notions of duality, tensor products, and component representation of tensors Presents the classical tensor calculus that functions as the advanced prerequisite for the development of subsequent chapters Provides the theory of physical and anholonomic components of tensors by associating them to the spaces of linear transformations and of tensor products and advances two applications of this theory Physical Components of Tensors contains a comprehensive account of tensor calculus, and is an essential reference for graduate students or engineers concerned with solid and structural mechanics.


Tensor Calculus

Tensor Calculus

Author: John Lighton Synge

Publisher: Courier Corporation

Published: 1978-01-01

Total Pages: 340

ISBN-13: 9780486636122

DOWNLOAD EBOOK

"This book is an excellent classroom text, since it is clearly written, contains numerous problems and exercises, and at the end of each chapter has a summary of the significant results of the chapter." — Quarterly of Applied Mathematics. Fundamental introduction for beginning student of absolute differential calculus and for those interested in applications of tensor calculus to mathematical physics and engineering. Topics include spaces and tensors; basic operations in Riemannian space, curvature of space, special types of space, relative tensors, ideas of volume, and more.


Vector and Tensor Analysis with Applications

Vector and Tensor Analysis with Applications

Author: A. I. Borisenko

Publisher: Courier Corporation

Published: 2012-08-28

Total Pages: 292

ISBN-13: 0486131904

DOWNLOAD EBOOK

Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.


Physical Properties of Crystals

Physical Properties of Crystals

Author: J. F. Nye

Publisher: Oxford University Press

Published: 1985

Total Pages: 356

ISBN-13: 9780198511656

DOWNLOAD EBOOK

First published in 1957, this classic study has been reissued in a paperback version that includes an additional chapter bringing the material up to date. The author formulates the physical properties of crystals systematically in tensor notation, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them. The mathematical groundwork is laid in a discussion of tensors of the first and second ranks. Tensors of higher ranks and matrix methods are then introduced as natural developments of the theory. A similar pattern is followed in discussing thermodynamic and optical aspects.


What Are Tensors Exactly?

What Are Tensors Exactly?

Author: Hongyu Guo

Publisher: World Scientific

Published: 2021-06-16

Total Pages: 246

ISBN-13: 9811241031

DOWNLOAD EBOOK

Tensors have numerous applications in physics and engineering. There is often a fuzzy haze surrounding the concept of tensor that puzzles many students. The old-fashioned definition is difficult to understand because it is not rigorous; the modern definitions are difficult to understand because they are rigorous but at a cost of being more abstract and less intuitive.The goal of this book is to elucidate the concepts in an intuitive way but without loss of rigor, to help students gain deeper understanding. As a result, they will not need to recite those definitions in a parrot-like manner any more. This volume answers common questions and corrects many misconceptions about tensors. A large number of illuminating illustrations helps the reader to understand the concepts more easily.This unique reference text will benefit researchers, professionals, academics, graduate students and undergraduate students.


Vectors, Tensors and the Basic Equations of Fluid Mechanics

Vectors, Tensors and the Basic Equations of Fluid Mechanics

Author: Rutherford Aris

Publisher: Courier Corporation

Published: 2012-08-28

Total Pages: 322

ISBN-13: 048613489X

DOWNLOAD EBOOK

Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.


Tensors and Their Applications

Tensors and Their Applications

Author: Nazrul Islam

Publisher: New Age International

Published: 2006-12

Total Pages: 6

ISBN-13: 8122418384

DOWNLOAD EBOOK

The Book Is Written Is In Easy-To-Read Style With Corresponding Examples. The Main Aim Of This Book Is To Precisely Explain The Fundamentals Of Tensors And Their Applications To Mechanics, Elasticity, Theory Of Relativity, Electromagnetic, Riemannian Geometry And Many Other Disciplines Of Science And Engineering, In A Lucid Manner. The Text Has Been Explained Section Wise, Every Concept Has Been Narrated In The Form Of Definition, Examples And Questions Related To The Concept Taught. The Overall Package Of The Book Is Highly Useful And Interesting For The People Associated With The Field.


Tensors for Physics

Tensors for Physics

Author: Siegfried Hess

Publisher: Springer

Published: 2015-04-25

Total Pages: 449

ISBN-13: 331912787X

DOWNLOAD EBOOK

This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics, at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to tensors of any rank, at graduate level. Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-trace formulas, coupling of irreducible tensors, rotation of tensors. Constitutive laws for optical, elastic and viscous properties of anisotropic media are dealt with. The anisotropic media include crystals, liquid crystals and isotropic fluids, rendered anisotropic by external orienting fields. The dynamics of tensors deals with phenomena of current research. In the last section, the 3D Maxwell equations are reformulated in their 4D version, in accord with special relativity.


A Student's Guide to Vectors and Tensors

A Student's Guide to Vectors and Tensors

Author: Daniel A. Fleisch

Publisher: Cambridge University Press

Published: 2011-09-22

Total Pages: 206

ISBN-13: 9780521171908

DOWNLOAD EBOOK

Vectors and tensors are among the most powerful problem-solving tools available, with applications ranging from mechanics and electromagnetics to general relativity. Understanding the nature and application of vectors and tensors is critically important to students of physics and engineering. Adopting the same approach used in his highly popular A Student's Guide to Maxwell's Equations, Fleisch explains vectors and tensors in plain language. Written for undergraduate and beginning graduate students, the book provides a thorough grounding in vectors and vector calculus before transitioning through contra and covariant components to tensors and their applications. Matrices and their algebra are reviewed on the book's supporting website, which also features interactive solutions to every problem in the text where students can work through a series of hints or choose to see the entire solution at once. Audio podcasts give students the opportunity to hear important concepts in the book explained by the author.


Nonlinear Theory Of Elasticity: Applications In Biomechanics

Nonlinear Theory Of Elasticity: Applications In Biomechanics

Author: Larry A Taber

Publisher: World Scientific

Published: 2004-02-19

Total Pages: 417

ISBN-13: 9814483397

DOWNLOAD EBOOK

Soft biological tissues often undergo large (nearly) elastic deformations that can be analyzed using the nonlinear theory of elasticity. Because of the varied approaches to nonlinear elasticity in the literature, some aspects of the subject may be difficult to appreciate. This book attempts to clarify and unify those treatments, illustrating the advantages and disadvantages of each through various examples in the mechanics of soft tissues. Applications include muscle, arteries, the heart, and embryonic tissues.