Physical and Applied Acoustics

Physical and Applied Acoustics

Author: Erwin Meyer

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 430

ISBN-13: 0323150683

DOWNLOAD EBOOK

Physical and Applied Acoustics: An Introduction explores the mechanical-acoustical or acoustical-electrical analogies that are based on common theoretical relationships. This book is composed of 11 chapters that discuss the theory, experiment, and technological applications of physical and applied acoustics. The introductory chapters deal with the sound wave propagation in liquids and gases, as well as the statistical theory of room acoustics. These topics are followed by discussions on sound absorption in different medium; the concept of sound radiation pressure; directional characteristics of sound sources; measurement and calibration of acoustics; and the fundamental physical and psychological facts of acoustics. The subsequent chapters cover the use of electroacoustics for the transmission of speech and music. A chapter examines the production and detection of extremely high-frequency sound, called quantum acoustics. The concluding chapter highlights the interaction phenomena between sound and flow in a medium.


Acoustics

Acoustics

Author: Allan D. Pierce

Publisher: Springer

Published: 2019-06-22

Total Pages: 797

ISBN-13: 3030112144

DOWNLOAD EBOOK

This corrected version of the landmark 1981 textbook introduces the physical principles and theoretical basis of acoustics with deep mathematical rigor, concentrating on concepts and points of view that have proven useful in applications such as noise control, underwater sound, architectural acoustics, audio engineering, nondestructive testing, remote sensing, and medical ultrasonics. Since its publication, this text has been used as part of numerous acoustics-related courses across the world, and continues to be used widely today. During its writing, the book was fine-tuned according to insights gleaned from a broad range of classroom settings. Its careful design supports students in their pursuit of a firm foundation while allowing flexibility in course structure. The book can easily be used in single-term or full-year graduate courses and includes problems and answers. This rigorous and essential text is a must-have for any practicing or aspiring acoustician.


Fundamentals of Physical Acoustics

Fundamentals of Physical Acoustics

Author: David T. Blackstock

Publisher: John Wiley & Sons

Published: 2000-04-24

Total Pages: 568

ISBN-13: 9780471319795

DOWNLOAD EBOOK

AN AUTHORITATIIVE, UP-TO-DATE INTRODUCTION TO PHYSICAL ACOUSTICS Easy to read and understand, Fundamentals of Physical Acoustics fills a long-standing need for an acoustics text that challenges but does not overpower graduate students in engineering and physics. Mathematical results and physical explanations go hand in hand, and a unique feature of the book is the balance it strikes between time-domain and frequency-domain presentations. Fundamentals of Physical Acoustics is intended for a two-semester, first-year graduate course, but is also suitable for advanced undergraduates. Emphasis on plane waves in the first part of the book keeps the mathematics simple yet accommodates a broad range of topics: propagation, reflection and transmission, normal modes and simple waveguides for rectilinear geometries, horns, inhomogeneous media, and sound absorption and dispersion. The second part of the book is devoted to a more rigorous development of the wave equation, spherical and cylindrical waves (including the more advanced mathematics required), advanced waveguides, baffled piston radiation, diffraction (treated in the time domain), and arrays. Applications and examples are drawn from: * Atmospheric acoustics * Noise control * Underwater acoustics * Engineering acoustics * Acoustical measurements Supplemented with more than 300 graphs and figures as well as copious end-of-chapter problems, Fundamentals of Physical Acoustics is also an excellent professional reference for engineers and scientists.


Physical Approach to Engineering Acoustics

Physical Approach to Engineering Acoustics

Author: Ronald N. Miles

Publisher: Springer Nature

Published: 2019-10-09

Total Pages: 380

ISBN-13: 303022676X

DOWNLOAD EBOOK

This textbook presents the fundamentals of engineering acoustics and examines in depth concepts within the domain that apply to reducing noise, measuring noise, and designing microphones and loudspeakers. The book particularly emphasizes the physical principles used in designing miniature microphones. These devices are used in billions of electronic products, most visibly, cell phones and hearing aids, and enable countless other applications. Distinct from earlier books on this topic that take the view of the electrical engineer analyzing mechanical systems using electric circuit analogies. This text uses Newtonian mechanics as a more appropriate paradigm for analyzing these mechanical systems and in so doing provides a more direct method of modeling. Written at a level appropriate for upper-division undergraduate courses, and enhanced with end-of-chapter problems and MatLab routines, the book is ideal as a core text for students interested in engineering acoustics in ME, EE, and physics programs, as well as a reference for engineers and technicians working in the huge global industry of miniature microphone design.


An Introduction to Acoustics

An Introduction to Acoustics

Author: Robert H. Randall

Publisher: Courier Corporation

Published: 2012-11-21

Total Pages: 354

ISBN-13: 0486174719

DOWNLOAD EBOOK

No branch of classical physics is older in its origins yet more modern in its applications than acoustics. Courses on acoustics very naturally begin with a study of vibrations, as a preliminary to the introduction of the wave equations. Both vibrations and waves, of course, are vastly important to all branches of physics and engineering. But it is very helpful to students to gain an understanding of mechanical waves before trying to comprehend the more subtle and abstract electromagnetic ones. This undergraduate-level text opens with an overview of fundamental particle vibration theory, and it proceeds to examinations of waves in air and in three dimensions, interference patterns and diffraction, and acoustic impedance, as illustrated in the behavior of horns. Subsequent topics include longitudinal waves in different gases and waves in liquids and solids; stationary waves and vibrating sources, as demonstrated by musical instruments; reflection and absorption of sound waves; speech and hearing; sound measurements and experimental acoustics; reproduction of sound; and miscellaneous applied acoustics. Supplementary sections include four appendixes and answers to problems. Introduction. Appendixes. List of Symbols. References. Index. Answers to Problems.