Phylogenetic Perspectives on the Vertebrate Immune System

Phylogenetic Perspectives on the Vertebrate Immune System

Author: Gregory Becker

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 380

ISBN-13: 1461512913

DOWNLOAD EBOOK

This book contains the proceedings of the first meeting on invertebrate immunity ever sponsored as a summer research conference by the Federation of American Societies for Experimental Biology (FASEB). The conference was held in Copper Mountain, CO from July 11-16, 1999. It was a an extension of a New York Academy of Sciences meeting entitled "Primordial Immunity: Foundations for the Vertebrate Immune System" held on May 2-5,1993 at the Marine Biological Laboratories in Woods Hole, MA. The proceedings of that meeting were published in The Annals of the New York Academy of Sciences (volume 712). At that meeting all the attendes agreed that this type of conference (a relatively small focused gathering) allowed for participation by investigators at all levels of their careers. We further agreed that we should search for a forum that would allow this meeting to continue. The FASEB Summer Research Conference was an excellent vehicle for this type of meeting. Furthermore, this year's participants decided to continue this meeting as a regularly scheduled FASEB sponsored event. This was a unique conference in the sense that it focused upon mechanisms of development and defense in protostome and deuterostome invertebrates and lower vertebrates. There was a strong emphasis on evolutionary cell biology, phylogenetic inferences and the evolution of recognition and regulatory systems.


Origin and Evolution of the Vertebrate Immune System

Origin and Evolution of the Vertebrate Immune System

Author: L. Du Pasquier

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 324

ISBN-13: 3642596746

DOWNLOAD EBOOK

The comparative approach to immunology can be traced to the era of Pasteur and Metchnikov in which observations regarding foreign recognition in invertebrates was a factor in the develop ment of the principal concepts that created the foundation of what now is the broad field of immunology. With each major experimental and conceptual breakthrough, the classical, albeit essential, question has been asked "are the immune systems of phylogenetically primitive vertebrates and invertebrates similar to that of mammals?" Somewhat surprisingly for the jawed verte brates, the general answer has been a qualified form of "yes", whereas for agnathans and invertebrate phyla it has been "no" so far. The apparent abruptness in the appearance of the immune system of vertebrates is linked to the introduction of the somatic generation of the diversity of its antigen specific receptors. Therefore the questions regarding the origin and evolution of the specific immune system revolve around this phenomenon. With respect to the origin of the system (aside from the or igin of the rearranging machinery itself, the study of which is still in its infancy) one can ask questions about the cellular and mo lecular contexts in which the mechanism was introduced.


Amphioxus Immunity

Amphioxus Immunity

Author: An-Long Xu

Publisher: Elsevier

Published: 2015-12-31

Total Pages: 306

ISBN-13: 0128096470

DOWNLOAD EBOOK

Amphioxus Immunity: Tracing the Origin of Human Immunity covers a remarkable range of information about Amphioxus and its evolutionary context. This compilation of what is currently known about Amphioxus, with a sharp focus on its immune system, includes 13 topics, such as: - Amphioxus as a model for understanding the evolution of vertebrates - basic knowledge of immunology - immune organs and cells of amphioxus - a genomic and transcriptomic view of the Amphioxus immunity - pattern recognition system in Amphioxus - transcription factors in Amphioxus - the complement system of Amphioxus - the oxidative burst system in Amphioxus - immune effectors in Amphioxus - lipid signaling of immune response in Amphioxus - apoptosis in amphioxus; primitive adaptive immune system of Amphioxus - and future research directions This valuable reference book is loaded with information that will be useful for anyone who wishes to learn more about the origin of vertebrates and adaptive immunity. - Provides new evidence on the origin of the adaptive immune system, the evolution of innate immunity, and evolution-stage specific immune defense mechanisms - Not only presents the cells and molecules involved in the adaptive immune response in Amphioxus, but also characterizes the origination and evolution of the gene families and pathways involved in innate immunity - Includes much pioneering work, from the molecular, genomic, and cellular to the individual level


Evolution by Gene Duplication

Evolution by Gene Duplication

Author: Susumu Ohno

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 171

ISBN-13: 364286659X

DOWNLOAD EBOOK

It is said that "necessity is the mother of invention". To be sure, wheels and pulleys were invented out of necessity by the tenacious minds of upright citi zens. Looking at the history of mankind, however, one has to add that "Ieisure is the mother of cultural improvement". Man's creative genius flourished only when his mind, freed from the worry of daily toils, was permitted to entertain apparently useless thoughts. In the same manner, one might say with regard to evolution that "natural selection mere(y tnodifted, while redundanry created". Natural selection has been extremely effective in policing alleHe mutations which arise in already existing gene loci. Because of natural selection, organisms have been able to adapt to changing environments, and by adaptive radiation many new species were created from a common ancestral form. Y et, being an effective policeman, natural selection is extremely conservative by nature. Had evolution been entirely dependent upon natural selection, from a bacterium only numerous forms of bacteria would have emerged. The creation of metazoans, vertebrates and finally mammals from unicellular organisms would have been quite impos sible, for such big leaps in evolution required the creation of new gene loci with previously nonexistent functions. Only the cistron which became redun dant was able to escape from the relentless pressure of natural selection, and by escaping, it accumulated formerly forbidden mutations to emerge as a new gene locus.