This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com
This state-of-the-art review explains the various aspects of a photopolymerization reaction, and the current and potential applications of photocuring: coatings, paints, adhesives, graphic arts, microelectronics, optics, medicine, stereolithography, laser writing, and more.
This valuable reference examines the fundamental aspects of acrylate systems used in commercial photopolymerization, and investigates advanced analytical systems that characterize acrylate and non-acrylate systems. The new non-acrylate systems covered include free radical, cation, and charge-transfer photopolymerizations. The book also discusses emerging applications for this technology in photoresists, orthopedic cements, fiber-filled composites, and electro-optic materials.
Photoinitiating systems play a key role in the starting point of a polymerization reaction under exposure to a UV or a visible light. The number of publications discussing photoinitiating systems for polymerization has seen a significant growth in recent years and this book provides an update on their latest research developments. The book covers different types of photoinitiating systems including UV radical photoinitiators, long wavelength sensitive radical photoinitiators, cationic photoinitiators and water soluble photoinitiators as well as a chapter on how to design novel photoinitiators. The book then focusses on the applications of the photoinitiators from nanoparticles and materials to ionic liquids and solar cells. Edited by leading names in the field, the book is suitable for postgraduate students and researchers in academia and industry interested in polymer chemistry, organic chemistry, materials science and the applications of the materials.
Photoinitiating systems for polymerization reactions are largely encountered in a variety of traditional and high-tech sectors, such as radiation curing, (laser) imaging, (micro)electronics, optics, and medicine. This book extensively covers radical and nonradical photoinitiating systems and is divided into four parts: * Basic principles in photopolymerization reactions * Radical photoinitiating systems * Nonradical photoinitiating systems * Reactivity of the photoinitiating system The four parts present the basic concepts of photopolymerization reactions, review all of the available photoinitiating systems and deliver a thorough description of the encountered mechanisms. A large amount of experimental and theoretical data has been collected herein. This book allows the reader to gain a clear understanding by providing a general discussion of the photochemistry and chemistry involved. The most recent and exciting developments, as well as the promising prospects for new applications, are outlined.
Vat Photopolymerization 3D Printing: Processes, Materials, and Applications focuses on the cutting-edge vat polymerization additive manufacturing technology, as well as its associated materials and potential applications. The book is divided into four parts, with the first providing some foundational concepts about the technology as well as providing background on the different vat photopolymerization techniques, such as grayscale, volumetric, multiwavelength, two-photon and more. The basic chemistry involved in the vat photopolymerization process is covered here as well. Section 2 discusses vat photopolymerization 3D printing of functional materials, including plastics, hydrogels, stimuli-responsive polymers, ceramics, and more. Section 3 covers various applications of the materials created, and the book concludes with a section looking at the future direction of vat photopolymerization 3D printing. - Provides a detailed introduction to the technology, materials, and applications of vat photopolymerization additive manufacturing (AM) - Discusses the basic chemistry in the vat photopolymerization process, including chemical reactions, ink components, functional additives, inhibitors, and more - Covers techniques for creating plastics, hydrogels, shape memory polymers, ceramics, and more - Details applications in bioengineering, engineering, metamaterials, and bio-inspired structures and functions
Advancements in photopolymers have led to groundbreaking achievements in the electronics, print, optical engineering, and medical fields. At present, photopolymers have myriad applications in semiconductor device manufacturing, printed circuit boards (PCBs), ultraviolet (UV) curing, printing plates, 3-D printing, microelectromechanical systems (MEMS), and medical materials. Processes such as photopolymerization, photodegradation, and photocrosslinking, as well as lithography technology in which photofabrications are performed by images of photopolymers, have given rise to very large-scale integrated (VLSI) circuits, microproducts, and more. Addressing topics such as chemically amplified resists, immersion lithography, extreme ultraviolet (EUV) lithography, and nanoimprinting, Photopolymers: Photoresist Materials, Processes, and Applications covers photopolymers from core concepts to industrial applications, providing the chemical formulae and structures of the materials discussed as well as practical case studies from some of the world’s largest corporations. Offering a state-of-the-art review of progress in the development of photopolymers, this book provides valuable insight into current and future opportunities for photopolymer use.
This guide to a safe and simple print-making technique is designed for both beginners and experienced practitioners. Provides information about materials and equipment, print preparation, inking and printing and health and safety. Aspects of the process are illustrated with fine art prints. Includes a brief history of printmaking, a glossary, a list of suppliers, a bibliography and an index.
The development of photosensitive materials in general and photoreactive polymers in particular is responsible for major advances in the information, imaging, and electronic industries. Computer parts manufacturing, information storage, and book and magazine publishing all depend on photoreactive polymer systems. The photo-and radiation-induced processes in polymers are also active areas of research. New information on the preparation and properties of com mercially available photosensitive systems is constantly being acquired. The recent demand for environmentally safe solvent-free and water-soluble materials also motivated changes in the composition of photopolymers and photoresists. The interest in holographic recording media for head-up displays, light scanners, and data recording stimulated development of reconfigurable and visible light sensitive materials. Photoconductive polymerizable coatings are being tested in electrostatic proofing and color printing. The list of available initiators, poly meric binders, and other coating ingredients is continually evolving to respond to the requirements of low component loss (low diffusivity) and the high rate of photochemical reactions.