Photons and Quantum Fluctuations

Photons and Quantum Fluctuations

Author: E. R. Pike

Publisher: CRC Press

Published: 2020-08-26

Total Pages: 244

ISBN-13: 1000157024

DOWNLOAD EBOOK

Based on a special ONR seminar, Photons and Quantum Fluctuations draws together discoveries in nonclassical or "silent" light for research workers and postgraduates in quantum optics. With nonclassical light, noise is reduced in amplitude below that expected by previous applications of the uncertainty principles. Historians of science who wish to ponder the philosophical implications of these developments may also find this a useful volume.


Quantum Fluctuations of Spacetime

Quantum Fluctuations of Spacetime

Author: Lawrence B. Crowell

Publisher: World Scientific

Published: 2005

Total Pages: 388

ISBN-13: 9812565159

DOWNLOAD EBOOK

Three key aspects of quantum gravity are considered in this book: phenomenology, potential experimental aspects and foundational theory. The phenomenology is the treatment of metric quantum fluctuations as torsional curves that deviate from classical expectations. This leads to possible experimental configurations that may detect such fluctuations. Most of these proposed experiments are quantum optical measurements of subtle quantum gravity effects in the interaction of photons and atoms. The foundational discussions attempt to find an substratum to string theories, which are motivated by the phenomenological treatment. Quantum gravity is not the quantization of general relativity, but is instead the embedding of quantum theory and gravitation into a more fundamental field theoretic framework.


An Introduction to Quantum Optics and Quantum Fluctuations

An Introduction to Quantum Optics and Quantum Fluctuations

Author: Peter W. Milonni

Publisher: Oxford University Press

Published: 2019

Total Pages: 543

ISBN-13: 0199215618

DOWNLOAD EBOOK

This is an introduction to the quantum theory of light and its broad implications and applications. A significant part of the book covers material with direct relevance to current basic and applied research, such as quantum fluctuations and their role in laser physics and the theory of forces between macroscopic bodies (Casimir effects). The book includes numerous historical sidelights throughout, and approximately seventy exercises. The book provides detailed expositions of the theory with emphasis on general physical principles. Foundational topics in classical and quantum electrodynamics are addressed in the first half of the book, including the semiclassical theory of atom-field interactions, the quantization of the electromagnetic field in dispersive and dissipative media, uncertainty relations, and spontaneous emission. The second half begins with a chapter on the Jaynes-Cummings model, dressed states, and some distinctly quantum-mechanical features of atom-field interactions, and includes discussion of entanglement, the no-cloning theorem, von Neumann's proof concerning hidden variable theories, Bell's theorem, and tests of Bell inequalities. The last two chapters focus on quantum fluctuations and fluctuation-dissipation relations, beginning with Brownian motion, the Fokker-Planck equation, and classical and quantum Langevin equations. Detailed calculations are presented for the laser linewidth, spontaneous emission noise, photon statistics of linear amplifiers and attenuators, and other phenomena. Van der Waals interactions, Casimir forces, the Lifshitz theory of molecular forces between macroscopic media, and the many-body theory of such forces based on dyadic Green functions are analyzed from the perspective of Langevin noise, vacuum field fluctuations, and zero-point energy.


Squeezed and Nonclassical Light

Squeezed and Nonclassical Light

Author: P. Tombesi

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 329

ISBN-13: 1475765746

DOWNLOAD EBOOK

The recent generation in the laboratory of phase squeezed and intensity squeezed light beams has brought to fruition the theoretical predictions of such non-classical phenomena which have been made and developed in recent years by a number of workers in the field of quantum optics. A vigorous development is now underway of both theory and experiment and the first measurements have been coi:Jfirmed and extended already in some half dozen laboratories. Although the fields of application of these novellight sources are as yet somewhat hazy in our minds and some inspired thinking is required along these lines, the pace and excitement of the research is very clear. It is to he hoped that the new possibilities of: making measurements below the quantum shot noise lirnit which is made possible by these squeezed states of light willlead to further fundamental advances in the near future. In this NATO ARW a number of the leaders in the field met in the extremely pleasant surroundings of Cortina d'Ampezzo and their contributions are recorded in this volume. The meeting was held at the Istituto d'Arte which was enjoying its lOOth anniversary celebrations. This ARW was preceeded by an ONR Special Seminar on "Photons and Quantum Fluctuations", the proceedings of which will be published by Adam Hilger Ltd. The timeliness of the meeting was acknowledged by the support of the NATO Scientific Affairs Division which we would like to acknowledge on behalf of all the participants.


Photons and Atoms

Photons and Atoms

Author: Claude Cohen-Tannoudji

Publisher: Wiley-VCH

Published: 1989-08-04

Total Pages: 494

ISBN-13:

DOWNLOAD EBOOK

Photons and Atoms Photons and Atoms: Introduction to Quantum Electrodynamics provides the necessary background to understand the various physical processes associated with photon-atom interactions. It starts with elementary quantum theory and classical electrodynamics and progresses to more advanced approaches. A critical comparison is made between these different, although equivalent, formulations of quantum electrodynamics. Using this format, the reader is offered a gradual, yet flexible introduction to quantum electrodynamics, avoiding formal discussions and excessive shortcuts. Complementing each chapter are numerous examples and exercises that can be used independently from the rest of the book to extend each chapter in many disciplines depending on the interests and needs of the reader.


Introduction to Quantum Optics

Introduction to Quantum Optics

Author: Harry Paul

Publisher: Cambridge University Press

Published: 2004-05-20

Total Pages: 258

ISBN-13: 9780521835633

DOWNLOAD EBOOK

This textbook provides a physical understanding of what photons are and of their properties and applications.


Exploring the Quantum

Exploring the Quantum

Author: Serge Haroche

Publisher: OUP Oxford

Published: 2006-08-11

Total Pages: 616

ISBN-13: 0191523240

DOWNLOAD EBOOK

The counter-intuitive aspects of quantum physics have been long illustrated by thought experiments, from Einstein's photon box to Schrödinger's cat. These experiments have now become real, with single particles - electrons, atoms, or photons - directly unveiling the strange features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.


Concepts of Quantum Optics

Concepts of Quantum Optics

Author: P. L. Knight

Publisher: Elsevier

Published: 2013-09-24

Total Pages: 228

ISBN-13: 1483278646

DOWNLOAD EBOOK

Concepts of Quantum Optics is a coherent and sequential coverage of some real insight into quantum physics. This book is divided into six chapters, and begins with an overview of the principles and concepts of radiation and quanta, with an emphasis on the significance of the Maxwell's electromagnetic theory of light. The next chapter describes first the properties of the radiation field in a bounded cavity, showing how each cavity field mode has the characteristics of a simple harmonic oscillator and how each can be quantized using known results for the quantum harmonic oscillator. This chapter also deals with the quantum fluctuations of the radiation field and the interpretation of a photon as an occupation of a normal mode of the system. These topics are followed by discussions of the radiation absorption and emission and the principles of coherent state and coherence functions. The final chapter considers the concept of semi-classical theory and its connection to quantum electrodynamics. This book is of value to undergraduate and postgraduate students who are starting research in laser physics or quantum optics.


Introduction to Quantum Optics

Introduction to Quantum Optics

Author: Gilbert Grynberg

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Covering a number of important subjects in quantum optics, this textbook is an excellent introduction for advanced undergraduate and beginning graduate students, familiarizing readers with the basic concepts and formalism as well as the most recent advances. The first part of the textbook covers the semi-classical approach where matter is quantized, but light is not. It describes significant phenomena in quantum optics, including the principles of lasers. The second part is devoted to the full quantum description of light and its interaction with matter, covering topics such as spontaneous emission, and classical and non-classical states of light. An overview of photon entanglement and applications to quantum information is also given. In the third part, non-linear optics and laser cooling of atoms are presented, where using both approaches allows for a comprehensive description. Each chapter describes basic concepts in detail, and more specific concepts and phenomena are presented in 'complements'.


Galileo Unbound

Galileo Unbound

Author: David D. Nolte

Publisher: Oxford University Press

Published: 2018-07-12

Total Pages: 384

ISBN-13: 0192528505

DOWNLOAD EBOOK

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.