The use of photoinitiators in the UV curing process shows remarkable possibilities in myriad applications. Highlighting critical factors such as reactivity, cure speeds, and application details, Industrial Photoinitiators: A Technical Guide is a practical, accessible, industrially oriented text that explains the theory, describes the products, and
Photoinitiators A comprehensive text that covers everything from the processes and mechanisms to the reactions and industrial applications of photoinitiators Photoinitiators offers a wide-ranging overview of existing photoinitiators and photoinitiating systems and their uses in ever-growing green technologies. The authors—noted experts on the topic—provide a concise review of the backgrounds in photopolymerization and photochemistry, explain the available structures, and examine the excited state properties, involved mechanisms, and structure, reactivity, and efficiency relationships. The text also contains information on the latest developments and trends in the design of novel tailor-made systems. The book explores the role of current systems in existing and emerging processes and applications. Comprehensive in scope, it covers polymerization of thick samples and in-shadow areas, polymerization under LEDs, NIR light induced thermal polymerization, photoinitiators for novel specific and improved properties, and much more. Written by an experienced and internationally renowned team of authors, this important book: Provides detailed information about excited state processes, mechanisms and design of efficient photoinitiator systems Discusses the performance of photoinitiators of polymerization by numerous examples of reactions and application Includes information on industrial applications Presents a review of current developments and challenges Offers an introduction to the background information necessary to understand thefield The role played by photoinitiators in a variety of different polymerization reactions Written for polymer chemists, photochemists, and materials scientists, Photoinitiators will also earn a place in the libraries of photochemists seeking an authoritative, one-stop guide to the processes, mechanisms, and industrial applications of photoinitiators.
Photoinitiating systems for polymerization reactions are largely encountered in a variety of traditional and high-tech sectors, such as radiation curing, (laser) imaging, (micro)electronics, optics, and medicine. This book extensively covers radical and nonradical photoinitiating systems and is divided into four parts: * Basic principles in photopolymerization reactions * Radical photoinitiating systems * Nonradical photoinitiating systems * Reactivity of the photoinitiating system The four parts present the basic concepts of photopolymerization reactions, review all of the available photoinitiating systems and deliver a thorough description of the encountered mechanisms. A large amount of experimental and theoretical data has been collected herein. This book allows the reader to gain a clear understanding by providing a general discussion of the photochemistry and chemistry involved. The most recent and exciting developments, as well as the promising prospects for new applications, are outlined.
This report contains a review of the state of the art in photoinitiated polymerisation. The review is divided into two main parts. The first part is devoted to a basic description of the different photoinitiation processes encountered. In the second part photopolymerisation reactions are presented and discussed. This review is published together with an indexed section containing bibliographic references and abstracts to the cited articles.
"This book, a combination of theory and practice, provides comprehensive knowledge in the field of radiation curing and support for your daily work. It offers guidance on how to select raw materials and features a troubleshooting chapter which provides concrete answers to possible problems." "This book is aimed towards formulators in the field of radiation curing, students and young professionals in coatings and printing inks with no previous experience of radiation curing and all readers who have an interest in and enjoy reading about the theory and practice of one of the fastest-growing technologies." --Book Jacket.
Presents the state of the technology, from fundamentals to new materials and applications Today's electronic devices, computers, solar cells, printing, imaging, copying, and recording technology, to name a few, all owe a debt to our growing understanding of the photophysics and photochemistry of polymeric materials. This book draws together, analyzes, and presents our current understanding of polymer photochemistry and photophysics. In addition to exploring materials, mechanisms, processes, and properties, the handbook also highlights the latest applications in the field and points to new developments on the horizon. Photochemistry and Photophysics of Polymer Materials is divided into seventeen chapters, including: Optical and luminescent properties and applications of metal complex-based polymers Photoinitiators for free radical polymerization reactions Photovoltaic polymer materials Photoimaging and lithographic processes in polymers Photostabilization of polymer materials Photodegradation processes in polymeric materials Each chapter, written by one or more leading experts and pioneers in the field, incorporates all the latest findings and developments as well as the authors' own personal insights and perspectives. References guide readers to the literature for further investigation of individual topics. Together, the contributions represent a series of major developments in the polymer world in which light and its energy have been put to valuable use. Not only does this reference capture our current state of knowledge, but it also provides the foundation for new research and the development of new materials and new applications.
* Provides a concise source of information on synthetic techniques, purification, and characterization methods for free-radical polymers. * Presents information on future trends in the synthesis of free-radical polymers.
Since the first groundbreaking edition of Developments in Pressure-Sensitive Products was introduced in 1998, heavy research has resulted in substantial progress in the field. Fully updated and expanded to reflect this activity, Developments in Pressure-Sensitive Products, Second Edition provides a detailed overview of the entire range of pressure-
This handbook provides an indispensable overview of all essential aspects of industrial-scale inkjet printing. Inkjet printing, as a scalable deposition technique, has grown in popularity due to its being additive, digital, and contact-free. Given these advantages, the technology can now be used in stable and mature industrial-scale applications. As the mechanisms for inkjet printing have improved, so too have the versatility and applicability of this machinery within industry. The handbook's coverage includes inks, printhead technology, substrates, metrology, software, as well as machine integration and pre- and post-processing approaches. This information is complemented by an overview of printing strategies and application development and covers technological advances in packaging, security printing, printed electronics, robotics, 3D printing, and bioprinting. Important topics like standardisation, regulatory requirements, ecological aspects, and patents. Readers will find: * The most comprehensive work on the topic with over 75 chapters and more than 1,500 pages relating to inkjet printing technology * The inkjet-printing expertise of corporate development engineers and academic researchers in one manual * A hands-on approach utilizing case studies, success stories, and practical hints that allow the reader direct, first-hand experience with the power of inkjet printing technology. The ideal resource for material scientists, engineering scientists in industry, electronic engineers, and surface and solid-state chemists,"Inkjet Printing in Industry" is an all-in-one tool for modern professionals and researchers alike. This handbook provides an indispensable overview of all essential aspects of industrial-scale inkjet printing. Inkjet printing, as a scalable deposition technique, has grown in popularity due to its being additive, digital, and contact-free. Given these advantages, the technology can now be used in stable and mature industrial-scale applications. As the mechanisms for inkjet printing have improved, so too have the versatility and applicability of this machinery within industry. The handbook's coverage includes inks, printhead technology, substrates, metrology, software, as well as machine integration and pre- and post-processing approaches. This information is complemented by an overview of printing strategies and application development and covers technological advances in packaging, security printing, printed electronics, robotics, 3D printing, and bioprinting. Important topics like standardisation, regulatory requirements, ecological aspects, and patents. Readers will find: * The most comprehensive work on the topic with over 75 chapters and more than 1,500 pages relating to inkjet printing technology * The inkjet-printing expertise of corporate development engineers and academic researchers in one manual * A hands-on approach utilizing case studies, success stories, and practical hints that allow the reader direct, first-hand experience with the power of inkjet printing technology. The ideal resource for material scientists, engineering scientists in industry, electronic engineers, and surface and solid-state chemists,"Inkjet Printing in Industry" is an all-in-one tool for modern professionals and researchers alike.