Phase-Locked Loops for Wireless Communications

Phase-Locked Loops for Wireless Communications

Author: Donald R. Stephens

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 424

ISBN-13: 0306473143

DOWNLOAD EBOOK

Phase-Locked Loops for Wireless Communications: Digitial, Analog and Optical Implementations, Second Edition presents a complete tutorial of phase-locked loops from analog implementations to digital and optical designs. The text establishes a thorough foundation of continuous-time analysis techniques and maintains a consistent notation as discrete-time and non-uniform sampling are presented. New to this edition is a complete treatment of charge pumps and the complementary sequential phase detector. Another important change is the increased use of MATLAB®, implemented to provide more familiar graphics and reader-derived phase-locked loop simulation. Frequency synthesizers and digital divider analysis/techniques have been added to this second edition. Perhaps most distinctive is the chapter on optical phase-locked loops that begins with sections discussing components such as lasers and photodetectors and finishing with homodyne and heterodyne loops. Starting with a historical overview, presenting analog, digital, and optical PLLs, discussing phase noise analysis, and including circuits/algorithms for data synchronization, this volume contains new techniques being used in this field. Highlights of the Second Edition: Development of phase-locked loops from analog to digital and optical, with consistent notation throughout; Expanded coverage of the loop filters used to design second and third order PLLs; Design examples on delay-locked loops used to synchronize circuits on CPUs and ASICS; New material on digital dividers that dominate a frequency synthesizer's noise floor. Techniques to analytically estimate the phase noise of a divider; Presentation of optical phase-locked loops with primers on the optical components and fundamentals of optical mixing; Section on automatic frequency control to provide frequency-locking of the lasers instead of phase-locking; Presentation of charge pumps, counters, and delay-locked loops. The Second Edition includes the essential topics needed by wireless, optics, and the traditional phase-locked loop specialists to design circuits and software algorithms. All of the material has been updated throughout the book.


Phase-Locked Loops for Wireless Communications

Phase-Locked Loops for Wireless Communications

Author: Donald R. Stephens

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 379

ISBN-13: 1461557178

DOWNLOAD EBOOK

This book is intended for the graduate or advanced undergraduate engineer. The primary motivation for writing the text was to present a complete tutorial of phase-locked loops with a consistent notation. As such, it can serve as a textbook in formal classroom instruction, or as a self-study guide for the practicing engineer. A former colleague, Kevin Kreitzer, had suggested that I write a text, with an emphasis on digital phase-locked loops. As modem designers, we were continually receiving requests from other engineers asking for a definitive reference on digital phase-locked loops. There are several good papers in the literature, but there was not a good textbook for either classroom or self-paced study. From my own experience in designing low phase noise synthesizers, I also knew that third-order analog loop design was omitted from most texts. With those requirements, the material in the text seemed to flow naturally. Chapter 1 is the early history of phase-locked loops. I believe that historical knowledge can provide insight to the development and progress of a field, and phase-locked loops are no exception. As discussed in Chapter 1, consumer electronics (color television) prompted a rapid growth in phase-locked loop theory and applications, much like the wireless communications growth today. xiv Preface Although all-analog phase-locked loops are becoming rare, the continuous time nature of analog loops allows a good introduction to phase-locked loop theory.


Phase-locked Loops

Phase-locked Loops

Author: Roland E. Best

Publisher: McGraw-Hill Companies

Published: 1993

Total Pages: 388

ISBN-13: 9780079113863

DOWNLOAD EBOOK

Unique book/disk set that makes PLL circuit design easier than ever. Table of Contents: PLL Fundamentals; Classification of PLL Types; The Linear PLL (LPLL); The Classical Digital PLL (DPLL); The All-Digital PLL (ADPLL); The Software PLL (SPLL); State Of The Art of Commercial PLL Integrated Circuits; Appendices; Index. Includes a 5 1/4" disk. 100 illustrations.


Phase-Locked Loops

Phase-Locked Loops

Author: Roland Best

Publisher: McGraw Hill Professional

Published: 2003-07-11

Total Pages: 434

ISBN-13: 0071501231

DOWNLOAD EBOOK

Phase Locked Loops (PLLs) are electronic circuits used for frequency control. Anything using radio waves, from simple radios and cell phones to sophisticated military communications gear uses PLLs.The communications industry’s big move into wireless in the past two years has made this mature topic red hot again. The fifth edition of this classic circuit reference comes complete with extremely valuable PLL design software written by Dr. Best. The software alone is worth many times the price of the book. The new edition also includes new chapters on frequency synthesis, CAD for PLLs, mixed-signal PLLs, and a completely new collection of sample communications applications.


Wideband Phase-locked Loops with High Spectral Purity for Wireless Communications

Wideband Phase-locked Loops with High Spectral Purity for Wireless Communications

Author: Kun Seok Lee

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The objective of this research is to demonstrate the feasibility of the implementation of wideband RF CMOS PLLs with high spectral purity using deep sub-micron technologies. To achieve wide frequency coverage, this dissertation proposed a 45-nm SOI-CMOS RF PLL with a wide frequency range to support multiple standards. The PLL has small parasitic capacitance with the help of a SOI technology, increasing the frequency tuning range of a capacitor bank. A designed and fabricated chip demonstrates the PLL supporting almost all cellular standards with a single PLL. This dissertation also proposed a third order sample-hold loop filter with two MOS switches for high spectral purity. Sample-hold operation improves in-band and out-of-band phase noise performance simultaneously in RF PLLs. By controlling the size of the MOS switches and control time, the nonideal effects of the MOS switches are minimized. The sample-hold loop filter is implemented within a 45-nm RF PLL and the performance is evaluated. Thus, this research provides a solution for wideband CMOS frequency synthesizers for multi-band, multi-mode, and multiple-standard applications in deep sub-micron technologies.


60-GHz CMOS Phase-Locked Loops

60-GHz CMOS Phase-Locked Loops

Author: Hammad M. Cheema

Publisher: Springer Science & Business Media

Published: 2010-06-22

Total Pages: 190

ISBN-13: 9048192803

DOWNLOAD EBOOK

Abstract This chapter lays the foundation for the work presented in latter chapters. The potential of 60 GHz frequency bands for high data rate wireless transfer is discussed and promising applications are enlisted. Furthermore, the challenges related to 60 GHz IC design are presented and the chapter concludes with an outline of the book. Keywords Wireless communication 60 GHz Millimeter wave integrated circuit design Phase-locked loop CMOS Communication technology has revolutionized our way of living over the last century. Since Marconi’s transatlantic wireless experiment in 1901, there has been tremendous growth in wireless communication evolving from spark-gap telegraphy to today’s mobile phones equipped with Internet access and multimedia capabilities. The omnipresence of wireless communication can be observed in widespread use of cellular telephony, short-range communication through wireless local area networks and personal area networks, wireless sensors and many others. The frequency spectrum from 1 to 6 GHz accommodates the vast majority of current wireless standards and applications. Coupled with the availability of low cost radio frequency (RF) components and mature integrated circuit (IC) techn- ogies, rapid expansion and implementation of these systems is witnessed. The downside of this expansion is the resulting scarcity of available bandwidth and allowable transmit powers. In addition, stringent limitations on spectrum and energy emissions have been enforced by regulatory bodies to avoid interference between different wireless systems.


Low-Noise Low-Power Design for Phase-Locked Loops

Low-Noise Low-Power Design for Phase-Locked Loops

Author: Feng Zhao

Publisher: Springer

Published: 2014-11-25

Total Pages: 106

ISBN-13: 3319122002

DOWNLOAD EBOOK

This book introduces low-noise and low-power design techniques for phase-locked loops and their building blocks. It summarizes the noise reduction techniques for fractional-N PLL design and introduces a novel capacitive-quadrature coupling technique for multi-phase signal generation. The capacitive-coupling technique has been validated through silicon implementation and can provide low phase-noise and accurate I-Q phase matching, with low power consumption from a super low supply voltage. Readers will be enabled to pick one of the most suitable QVCO circuit structures for their own designs, without additional effort to look for the optimal circuit structure and device parameters.


Phase-Locked Loop Synthesizer Simulation

Phase-Locked Loop Synthesizer Simulation

Author: Giovanni Bianchi

Publisher: McGraw Hill Professional

Published: 2005-03-30

Total Pages: 242

ISBN-13: 0071466894

DOWNLOAD EBOOK

Phase Locked Loop frequency synthesis is a key component of all wireless systems. This is a complete toolkit for PLL synthesizer design, with MathCAD, SIMetrix files included on CD, allowing readers to perform sophisticated calculation and simulation exercises. Describes how to calculate PLL performance by using standard mathematical or circuit analysis programs


Noise-Shaping All-Digital Phase-Locked Loops

Noise-Shaping All-Digital Phase-Locked Loops

Author: Francesco Brandonisio

Publisher: Springer Science & Business Media

Published: 2013-12-17

Total Pages: 183

ISBN-13: 3319036599

DOWNLOAD EBOOK

This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.