Phase-Locked and Frequency Feedback Systems

Phase-Locked and Frequency Feedback Systems

Author: Jacob Klapper

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 417

ISBN-13: 0323151256

DOWNLOAD EBOOK

Phase-Locked and Frequency-Feedback Systems: Principles and Techniques presents the operating principles and methods of design of phase-locked and frequency-feedback systems. This book is divided into 10 chapters that provide step-by-step design procedures and graphical aids, with illustrations bearing on real problems experienced in these systems. This work specifically tackles the application of these systems as FM demodulators with lowered thresholds. Chapters 1 and 2 deal briefly with the elements of linear systems, feedback theory, and noise, providing the minimum background for the material presented in the remainder of the text. Chapter 3 describes the characteristics of the major components that comprise the loops and the performance of the conventional and multi-loop FM demodulators. Chapters 4 to 7 present the basic describing equations and design for the FM feedback (FMFB) and phase-locked loop (PLL). These chapters further illustrate step-by-step design procedures with performance characteristics for low-threshold angle demodulation using typical design examples. Chapter 8 highlights the design principles, which are extended to the design of advanced demodulators featuring demodulation thresholds lower than those of the simple PLL or FMFB. Chapter 9 focuses on digital FM demodulation and PLL applications other than FM demodulation. Lastly, Chapter 10 presents the methods of testing and evaluating loop performance. Undergraduate and graduate level students, as well as practicing engineers, will find this book invaluable.


Phase-Locked Frequency Generation and Clocking

Phase-Locked Frequency Generation and Clocking

Author: Woogeun Rhee

Publisher: Institution of Engineering and Technology

Published: 2020-06-09

Total Pages: 736

ISBN-13: 1785618857

DOWNLOAD EBOOK

Phase-Locked Frequency Generation and Clocking covers essential topics and issues in current Phase-Locked Loop design, from a light touch of fundamentals to practical design aspects. Both wireless and wireline systems are considered in the design of low noise frequency generation and clocking systems. Topics covered include architecture and design, digital-intensive Phase-Locked Loops, low noise frequency generation and modulation, clock-and-data recovery, and advanced clocking and clock generation systems. The book not only discusses fundamental architectures, system design considerations, and key building blocks but also covers advanced design techniques and architectures in frequency generation and clocking systems. Readers can expect to gain insights into phase-locked clocking as well as system perspectives and circuit design aspects in modern Phase-Locked Loop design.


Phase-Locked Loops

Phase-Locked Loops

Author: Woogeun Rhee

Publisher: John Wiley & Sons

Published: 2023-12-19

Total Pages: 389

ISBN-13: 1119909066

DOWNLOAD EBOOK

Phase-Locked Loops Discover the essential materials for phase-locked loop circuit design, from fundamentals to practical design aspects A phase-locked loop (PLL) is a type of circuit with a range of important applications in telecommunications and computing. It generates an output signal with a controlled relationship to an input signal, such as an oscillator which matches the phases of input and output signals. This is a critical function in coherent communication systems, with the result that the theory and design of these circuits are essential to electronic communications of all kinds. Phase-Locked Loops: System Perspectives and Circuit Design Aspects provides a concise, accessible introduction to PLL design. It introduces readers to the role of PLLs in modern communication systems, the fundamental techniques of phase-lock circuitry, and the possible applications of PLLs in a wide variety of electronic communications contexts. The first book of its kind to incorporate modern architectures and to balance theoretical fundamentals with detailed design insights, this promises to be a must-own text for students and industry professionals. The book also features: Coverage of PLL basics with insightful analysis and examples tailored for circuit designers Applications of PLLs for both wireless and wireline systems Practical circuit design aspects for modern frequency generation, frequency modulation, and clock recovery systems Phase-Locked Loops is essential for graduate students and advanced undergraduates in integrated circuit design, as well researchers and engineers in electrical and computing subjects.


Microwave and Wireless Synthesizers

Microwave and Wireless Synthesizers

Author: Ulrich L. Rohde

Publisher: John Wiley & Sons

Published: 1997-08-25

Total Pages: 664

ISBN-13: 9780471520191

DOWNLOAD EBOOK

Over the past decade, great strides have been made in the technology of microwave oscillators and synthesizers, with digital frequency synthesizers in particular attracting much attention. These synthesizers are now being used in virtually all modern signal generators and radio communication equipment. Until now, however, detailed information about their design has been hard to come by-much of it scattered through journal articles-and most books on the subject have taken a primarily theoretical approach. Enter Microwave and Wireless Synthesizers-the first book to emphasize both practical circuit information from RF to millimeter-wave frequencies and up-to-date theory. Based on course material taught by author Ulrich L. Rohde at George Washington University and recent work done by the author at Compact Software, Inc. and Synergy Microwave Corporation, this volume is a complete revision and update of Rohde's landmark text, Digital PLL Frequency Synthesizers: Theory and Design. While it provides all the necessary theory and formulas, it also offers an in-depth look at the practical side of the phase-lock loop (PLL) in synthesizers-including special loops, loop components, and practical circuits-material that is not available in any other book. Rohde explains loop fundamentals, demonstrates the linear approach to oscillator phase noise, discusses the digital direct synthesizer technique, addresses low noise oscillator design, and provides insight into the role and design of crystal oscillators, mixers, phase/frequency discriminators, wideband high-gain amplifiers, programmable dividers, and loop filters. He goes on to cover conventional multiloop synthesizers and survey existing state-of-the-art microwave synthesizer applications. Extensive appendices review the mathematics of useful functions and various applications, including even the complex nonlinear theory of noise in large signal systems such as mixers and oscillators. Microwave and Wireless Synthesizers allows anyone with a PC running either Windows 3.11 or Windows NT to explore real-world design. It uses programs for the solution of digital phase-lock loop systems, tabulates the results, and shows how Bode diagrams are determined by the computer's graphic capabilities. It also includes examples using commercially available linear and nonlinear CAD programs to provide accurate evaluation and optimization of oscillators and other useful circuits and many practical charts. For companies involved in test and communication equipment, this book reduces design and research costs by providing a large number of proven circuits and expediting the design process. It is also an outstanding senior/graduate level textbook for electrical engineering students and an invaluable resource for practicing engineers, senior engineers, and managers who would like to be able to evaluate new trends and techniques in the field.


Phase Locked Loop Design as a Frequency Multiplier

Phase Locked Loop Design as a Frequency Multiplier

Author: George Tom Varghese

Publisher:

Published: 2012-10

Total Pages: 0

ISBN-13: 9783659249532

DOWNLOAD EBOOK

High-performance digital systems use clocks to sequence operations and synchronize between functional units and between ICs. Clock frequencies and data rates have been increasing with each generation of processing technology and processor architecture. Phase locked-loops (PLLs) are widely used to generate well-timed on-chip clocks in high-performance digital systems. A PLL is a closed loop frequency system that locks the phase of an output signal to an input reference signal. PLL's are widely used in computer, radio, and telecommunications systems where it is necessary to stabilize a generated signal or to detect signals. The term "lock" refers to a constant or zero phase difference between two signals. The signal from the feedback path is compared to the input reference signal, until the two signals are locked. If the phase is unmatched, this is called the unlocked state, and the signal is sent to each component in the loop to correct the phase difference. These components consist of the Phase Frequency Detector (PFD), the charge pump (CP), the low pass filter (LPF), the voltage controlled oscillator (VCO) and divide by counter. The PFD detects any phase differences in and and then generates an error signal. According to that error signal the CP either increases or decreases the amount of charge to the LPF. This amount of charge either speeds up or slows down the VCO. The loop continues in this process until the phase difference between and is zero or constant--this is the locked mode. After the loop has attained a locked status, the loop still continues in the process but the output of each component is constant. The output signal has the same phase and/or frequency as .A divider can be used in the feedback path to synthesize a frequency different than that of the reference signal. The application I chose in designing the PLL was a frequency synthesizer. A frequency synthesizer generates a frequency that can have a different frequency from the original reference si.


Engineering Embedded Systems

Engineering Embedded Systems

Author: Peter Hintenaus

Publisher: Springer

Published: 2014-10-30

Total Pages: 359

ISBN-13: 3319106805

DOWNLOAD EBOOK

This is a textbook for graduate and final-year-undergraduate computer-science and electrical-engineering students interested in the hardware and software aspects of embedded and cyberphysical systems design. It is comprehensive and self-contained, covering everything from the basics to case-study implementation. Emphasis is placed on the physical nature of the problem domain and of the devices used. The reader is assumed to be familiar on a theoretical level with mathematical tools like ordinary differential equation and Fourier transforms. In this book these tools will be put to practical use. Engineering Embedded Systems begins by addressing basic material on signals and systems, before introducing to electronics. Treatment of digital electronics accentuating synchronous circuits and including high-speed effects proceeds to micro-controllers, digital signal processors and programmable logic. Peripheral units and decentralized networks are given due weight. The properties of analog circuits and devices like filters and data converters are covered to the extent desirable by a systems architect. The handling of individual elements concludes with power supplies including regulators and converters. The final section of the text is composed of four case studies: • electric-drive control, permanent magnet synchronous motors in particular; • lock-in amplification with measurement circuits for weight and torque, and moisture; • design of a simple continuous wave radar that can be operated to measure speed and distance; and • design of a Fourier transform infrared spectrometer for process applications. End-of-chapter exercises will assist the student to assimilate the tutorial material and these are supplemented by a downloadable solutions manual for instructors. The “pen-and-paper” problems are further augmented with laboratory activities. In addition to its student market, Engineering Embedded Systems will assist industrial practitioners working in systems architecture and the design of electronic measurement systems to keep up to date with developments in embedded systems through self study.