Pharmaceutical and Biomedical Portfolio Management in a Changing Global Environment explores some of the critical forces at work today in the complex endeavour of pharmaceutical and medical product development. Written by experienced professionals, and including real-world approaches and best practice examples, this new title addresses three key areas – small molecules, large molecules, and medical devices - and provides hard-to-find, consolidated information relevant to and needed by pharmaceutical, biotech, and medical device company managers.
This book describes seven areas in the field of biotechnology operations as practiced by biopharmaceutical firms and nonprofit institutions. Revisions focus upon changes that have occurred in several areas over the past six years, with emphasis on regulatory, biomanufacturing, clinical and technical information, along with processes and guidlines that have added to the discipline. Examples are increased for new technical fields such as cell and tissue engineering. Further, illustrations or figures are added to each chapter to emphasize particular points.
Project managers in drug development are the driving force behind the coordination of efforts. This book provides a practical reference for project managers in the pharmaceutical and biotech drug development industry, with the goal of assisting in creating an efficient and effective team structure and environment. The text details the role of project managers at each stage of drug development, the key interfaces that the PM will need to work closely with, and essential tools of the trade including frequently used techniques and methodologies. This book is useful for both entry-level and advanced-level PMs, as well as non-project managers from other functions. Features Includes authors' recent experience with improved tactics and technologies/software at various stages of drug development. Provides the most up-to-date and best practices, techniques, and methodologies in project management. Details the role of the PM at each stage of drug development, including working with the key interfaces throughout the process. Diverse audience including nonproject managers in clinical development, clinical operations, regulatory affairs, medical affairs, clinical pharmacology, and biostatistics. Provides templates and timelines for critical paths from development to commercialization and has potential as a textbook on relevant courses.
Methods, Processes, and Tools for Collaboration "The time has come to fundamentally rethink how we handle the building of knowledge in biomedical sciences today. This book describes how the computational sciences have transformed into being a key knowledge broker, able to integrate and operate across divergent data types." Bryn Williams-Jones, Associate Research Fellow, Pfizer The pharmaceutical industry utilizes an extended network of partner organizations in order to discover and develop new drugs, however there is currently little guidance for managing information and resources across collaborations. Featuring contributions from the leading experts in a range of industries, Collaborative Computational Technologies for Biomedical Research provides information that will help organizations make critical decisions about managing partnerships, including: Serving as a user manual for collaborations Tackling real problems from both human collaborative and data and informatics perspectives Providing case histories of biomedical collaborations and technology-specific chapters that balance technological depth with accessibility for the non-specialist reader A must-read for anyone working in the pharmaceuticals industry or academia, this book marks a major step towards widespread collaboration facilitated by computational technologies.
Can academia save the pharmaceutical industry? The pharmaceutical industry is at a crossroads. The urgent need for novel therapies cannot stem the skyrocketing costs and plummeting productivity plaguing R&D, and many key products are facing patent expiration. Dr. Rathnam Chaguturu presents a case for collaboration between the pharmaceutical industry and academia that could reverse the industry's decline. Collaborative Innovation in Drug Discovery: Strategies for Public and Private Partnerships provides insight into the potential synergy of basing R&D in academia while leaving drug companies to turn hits into marketable products. As Founder and CEO of iDDPartners, focused on pharmaceutical innovation, Founding president of the International Chemical Biology Society, and Senior Director-Discovery Sciences, SRI International, Dr. Chaguturu has assembled a panel of experts from around the world to weigh in on issues that affect the two driving forces in medical advancement. Gain global perspectives on the benefits and potential issues surrounding collaborative innovation Discover how industries can come together to prevent another "Pharma Cliff" Learn how nonprofits are becoming the driving force behind innovation Read case studies of specific academia-pharma partnerships for real-life examples of successful collaboration Explore government initiatives that help foster cooperation between industry and academia Dr. Chaguturu’s thirty-five years of experience in academia and industry, managing new lead discovery projects and forging collaborative partnerships with academia, disease foundations, nonprofits, and government agencies lend him an informative perspective into the issues facing pharmaceutical progress. In Collaborative Innovation in Drug Discovery: Strategies for Public and Private Partnerships, he and his expert team provide insight into the various nuances of the debate.
The first book to focus on comprehensive systems biology as applied to drug discovery and development Drawing on real-life examples, Systems Biology in Drug Discovery and Development presents practical applications of systems biology to the multiple phases of drug discovery and development. This book explains how the integration of knowledge from multiple sources, and the models that best represent that integration, inform the drug research processes that are most relevant to the pharmaceutical and biotechnology industries. The first book to focus on comprehensive systems biology and its applications in drug discovery and development, it offers comprehensive and multidisciplinary coverage of all phases of discovery and design, including target identification and validation, lead identification and optimization, and clinical trial design and execution, as well as the complementary systems approaches that make these processes more efficient. It also provides models for applying systems biology to pharmacokinetics, pharmacodynamics, and candidate biomarker identification. Introducing and explaining key methods and technical approaches to the use of comprehensive systems biology on drug development, the book addresses the challenges currently facing the pharmaceutical industry. As a result, it is essential reading for pharmaceutical and biotech scientists, pharmacologists, computational modelers, bioinformaticians, and graduate students in systems biology, pharmaceutical science, and other related fields.
Practical Utility of Biomarkers in Drug Discovery and Development covers all aspects of biomarker research applied to drug discovery and development and contains state-of-the-art appraisals on the practical utility of genomic, biochemical, and protein biomarkers. Case histories and lessons from successful and unsuccessful applications of biomarkers are included along with key chapters on GLP validation, safety biomarkers and proteomics biomarkers. Regulatory agency perspectives and initiatives both in the US and internationally are also discussed.
Biomedical Technology and Devices, Second Edition focuses on the equipment, devices, and techniques used in modern medicine to diagnose, treat, and monitor human illnesses. Gathering together and compiling the latest information available on medical technology, this revised work adds ten new chapters. It starts with the basics, introducing the hist
Dieses Buch ist ein wichtiges Referenzwerk für Toxikologen in vielen Bereichen und bietet eine umfassende Analyse molekular Modellansätze und Strategien der Risikobewertung von pharmazeutischen und Umweltchemikalien. - Zeigt, was mit rechnergestützter Toxikologie aktuell erreicht werden kann, und wirft einen Blick auf zukünftige Entwicklungen. - Gibt Antworten zu Themen wie Datenquellen, Datenpflege, Behandlung, Modellierung und Interpretation kritischer Endpunkte im Hinblick auf Gefahrenbewertungen im 21. Jahrhundert. - Bündelt herausragende Konzepte und das Wissen führender Autoren in einem einzigartigen Referenzwerk. - Untersucht detailliert QSAR-Modelle, Eigenschaften physiochemischer Arzneistoffe, strukturbasiertes Drug Targeting, die Bewertung chemischer Mischungen und Umweltmodelle. - Behandelt zusätzlich die Sicherheitsbewertung von Verbraucherprodukten und den Bereich chemische Abwehr und bietet Kapitel zu Open-Source-Toxikologie und Big Data.
This book presents the proceedings of the IUPESM World Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.