Nearly Integrable Infinite-Dimensional Hamiltonian Systems

Nearly Integrable Infinite-Dimensional Hamiltonian Systems

Author: Sergej B. Kuksin

Publisher: Springer

Published: 2006-11-15

Total Pages: 128

ISBN-13: 3540479201

DOWNLOAD EBOOK

The book is devoted to partial differential equations of Hamiltonian form, close to integrable equations. For such equations a KAM-like theorem is proved, stating that solutions of the unperturbed equation that are quasiperiodic in time mostly persist in the perturbed one. The theorem is applied to classical nonlinear PDE's with one-dimensional space variable such as the nonlinear string and nonlinear Schr|dinger equation andshow that the equations have "regular" (=time-quasiperiodic and time-periodic) solutions in rich supply. These results cannot be obtained by other techniques. The book will thus be of interest to mathematicians and physicists working with nonlinear PDE's. An extensivesummary of the results and of related topics is provided in the Introduction. All the nontraditional material used is discussed in the firstpart of the book and in five appendices.


Geometric Integration Theory on Supermanifolds

Geometric Integration Theory on Supermanifolds

Author: T. Voronov

Publisher: CRC Press

Published: 1991

Total Pages: 152

ISBN-13: 9783718651993

DOWNLOAD EBOOK

The author presents the first detailed and original account of his theory of forms on supermanifolds-a correct and non-trivial analogue of Cartan-de Rham theory based on new concepts. The paper develops the apparatus of supermanifold differential topology necessary for the integration theory. A key feature is the identification of a class of proper morphisms intimately connected with Berezin integration, which are of fundamental importance in various problems. The work also contains a condensed introduction to superanalysis and supermanifolds, free from algebraic formalism, which sets out afresh such challenging problems as the Berezin intgegral on a bounded domain.


Analysis of Hamiltonian PDEs

Analysis of Hamiltonian PDEs

Author: Sergej B. Kuksin

Publisher: Clarendon Press

Published: 2000

Total Pages: 228

ISBN-13: 9780198503958

DOWNLOAD EBOOK

For the last 20-30 years, interest among mathematicians and physicists in infinite-dimensional Hamiltonian systems and Hamiltonian partial differential equations has been growing strongly, and many papers and a number of books have been written on integrable Hamiltonian PDEs. During the last decade though, the interest has shifted steadily towards non-integrable Hamiltonian PDEs. Here, not algebra but analysis and symplectic geometry are the appropriate analysing tools. The present book is the first one to use this approach to Hamiltonian PDEs and present a complete proof of the "KAM for PDEs" theorem. It will be an invaluable source of information for postgraduate mathematics and physics students and researchers.


Recent Developments in Integrable Systems and Related Topics of Mathematical Physics

Recent Developments in Integrable Systems and Related Topics of Mathematical Physics

Author: Victor M. Buchstaber

Publisher: Springer

Published: 2018-12-30

Total Pages: 226

ISBN-13: 3030048071

DOWNLOAD EBOOK

This volume, whose contributors include leading researchers in their field, covers a wide range of topics surrounding Integrable Systems, from theoretical developments to applications. Comprising a unique collection of research articles and surveys, the book aims to serve as a bridge between the various areas of Mathematics related to Integrable Systems and Mathematical Physics. Recommended for postgraduate students and early career researchers who aim to acquire knowledge in this area in preparation for further research, this book is also suitable for established researchers aiming to get up to speed with recent developments in the area, and may very well be used as a guide for further study.


Important Developments in Soliton Theory

Important Developments in Soliton Theory

Author: A.S. Fokas

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 563

ISBN-13: 3642580459

DOWNLOAD EBOOK

In the last ten to fifteen years there have been many important developments in the theory of integrable equations. This period is marked in particular by the strong impact of soliton theory in many diverse areas of mathematics and physics; for example, algebraic geometry (the solution of the Schottky problem), group theory (the discovery of quantum groups), topology (the connection of Jones polynomials with integrable models), and quantum gravity (the connection of the KdV with matrix models). This is the first book to present a comprehensive overview of these developments. Numbered among the authors are many of the most prominent researchers in the field.


First European Congress of Mathematics Paris, July 6–10, 1992

First European Congress of Mathematics Paris, July 6–10, 1992

Author: Anthony Joseph

Publisher: Nelson Thornes

Published: 1994-07

Total Pages: 548

ISBN-13: 9783764327996

DOWNLOAD EBOOK

Table of Contents: D. Duffie: Martingales, Arbitrage, and Portfolio Choice • J. Fröhlich: Mathematical Aspects of the Quantum Hall Effect • M. Giaquinta: Analytic and Geometric Aspects of Variational Problems for Vector Valued Mappings • U. Hamenstädt: Harmonic Measures for Leafwise Elliptic Operators Along Foliations • M. Kontsevich: Feynman Diagrams and Low-Dimensional Topology • S.B. Kuksin: KAM-Theory for Partial Differential Equations • M. Laczkovich: Paradoxical Decompositions: A Survey of Recent Results • J.-F. Le Gall: A Path-Valued Markov Process and its Connections with Partial Differential Equations • I. Madsen: The Cyclotomic Trace in Algebraic K-Theory • A.S. Merkurjev: Algebraic K-Theory and Galois Cohomology • J. Nekovár: Values of L-Functions and p-Adic Cohomology • Y.A. Neretin: Mantles, Trains and Representations of Infinite Dimensional Groups • M.A. Nowak: The Evolutionary Dynamics of HIV Infections • R. Piene: On the Enumeration of Algebraic Curves - from Circles to Instantons • A. Quarteroni: Mathematical Aspects of Domain Decomposition Methods • A. Schrijver: Paths in Graphs and Curves on Surfaces • B. Silverman: Function Estimation and Functional Data Analysis • V. Strassen: Algebra and Complexity • P. Tukia: Generalizations of Fuchsian and Kleinian Groups • C. Viterbo: Properties of Embedded Lagrange Manifolds • D. Voiculescu: Alternative Entropies in Operator Algebras • M. Wodzicki : Algebraic K-Theory and Functional Analysis • D. Zagier: Values of Zeta Functions and Their Applications


Perturbation Theory

Perturbation Theory

Author: Giuseppe Gaeta

Publisher: Springer Nature

Published: 2022-12-16

Total Pages: 601

ISBN-13: 1071626213

DOWNLOAD EBOOK

This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.