Relativistic Quantum Dynamics

Relativistic Quantum Dynamics

Author: Eugene Stefanovich

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-11-05

Total Pages: 244

ISBN-13: 3110493225

DOWNLOAD EBOOK

In this third volume of three, quantum electrodynamics is formulated in the language of physical „dressed" particles. A theory where charged particles interact via instantaneous action-at-a-distance forces is constructed - without need for renormalization. This theory describes electromagnetic phenomena in terms of directly interacting charges, but in full accord with fundamental principles of relativity and causality. Contents Three ways to look at QFT Dressing What are advantages of dressed Hamiltonian? Coulomb potential and beyond Decays RQD in higher orders Classical electrodynamics Experimental support of RQD Particles and relativity Special theory of relativity Unitary dressing transformation Integral for decay law Coulomb scattering integral in fourth order Relativistic invariance of Coulomb–Darwin–Breit electrodynamics


Electrodynamics and Classical Theory of Fields and Particles

Electrodynamics and Classical Theory of Fields and Particles

Author: A. O. Barut

Publisher: Courier Corporation

Published: 2012-04-30

Total Pages: 258

ISBN-13: 0486158713

DOWNLOAD EBOOK

Comprehensive graduate-level text by a distinguished theoretical physicist reveals the classical underpinnings of modern quantum field theory. Topics include space-time, Lorentz transformations, conservation laws, equations of motion, Green’s functions, and more. 1964 edition.


Quantum Field Theory and the Standard Model

Quantum Field Theory and the Standard Model

Author: Matthew D. Schwartz

Publisher: Cambridge University Press

Published: 2014

Total Pages: 869

ISBN-13: 1107034736

DOWNLOAD EBOOK

A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.


Quantum Mechanics and the Particles of Nature

Quantum Mechanics and the Particles of Nature

Author: Anthony Sudbery

Publisher:

Published: 1986

Total Pages: 358

ISBN-13: 9780521277655

DOWNLOAD EBOOK

This book is a quantum mechanics text, written on the assumption that the purpose of learning quantum mechanics is to be able to understand the results of fundamental research into the constitution of the physical world. The text essentially concerns itself with three themes, these being a logical exposition of quantum mechanics, a full discussion of the difficulties in the interpretation of quantum mechanics, and an outline of the current state of understanding of theoretical particle physics, The reader is assumed to have some mathematical skill, but no prior knowledge of physics is assumed. The book will be used for final-year undergraduate courses in mathematics and physics, and of interest to professionals in philosophy and pure mathematics.


Particles, Fields, Space-Time

Particles, Fields, Space-Time

Author: Martin Pohl

Publisher: CRC Press

Published: 2020-09-13

Total Pages: 313

ISBN-13: 1000176975

DOWNLOAD EBOOK

CHOICE Highly Recommended 2021 Particles, Fields, Space-Time: From Thomson's Electron to Higgs' Boson explores the concepts, ideas, and experimental results that brought us from the discovery of the first elementary particle in the end of the 19th century to the completion of the Standard Model of particle physics in the early 21st century. The book concentrates on disruptive events and unexpected results that fundamentally changed our view of particles and how they move through space-time. It separates the mathematical and technical details from the narrative into focus boxes, so that it remains accessible to non-scientists, yet interesting for those with a scientific background who wish to further their understanding. The text presents and explains experiments and their results wherever appropriate. This book will be of interest to a general audience, but also to students studying particle physics, physics teachers at all levels, and scientists with a recreational curiosity towards the subject. Features Short, comprehensive overview concentrating on major breakthroughs, disruptive ideas, and unexpected results Accessible to all interested in subatomic physics with little prior knowledge required Contains the latest developments in this exciting field


Local Quantum Physics

Local Quantum Physics

Author: Rudolf Haag

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 400

ISBN-13: 3642614582

DOWNLOAD EBOOK

The new edition provided the opportunity of adding a new chapter entitled "Principles and Lessons of Quantum Physics". It was a tempting challenge to try to sharpen the points at issue in the long lasting debate on the Copenhagen Spirit, to assess the significance of various arguments from our present vantage point, seventy years after the advent of quantum theory, where, after ali, some problems appear in a different light. It includes a section on the assumptions leading to the specific mathematical formalism of quantum theory and a section entitled "The evolutionary picture" describing my personal conclusions. Alto gether the discussion suggests that the conventional language is too narrow and that neither the mathematical nor the conceptual structure are built for eter nity. Future theories will demand radical changes though not in the direction of a return to determinism. Essential lessons taught by Bohr will persist. This chapter is essentially self-contained. Some new material has been added in the last chapter. It concerns the char acterization of specific theories within the general frame and recent progress in quantum field theory on curved space-time manifolds. A few pages on renor malization have been added in Chapter II and some effort has been invested in the search for mistakes and unclear passages in the first edition. The central objective of the book, expressed in the title "Local Quantum Physics", is the synthesis between special relativity and quantum theory to gether with a few other principles of general nature.


Statistical Physics of Fields

Statistical Physics of Fields

Author: Mehran Kardar

Publisher: Cambridge University Press

Published: 2007-06-07

Total Pages: 376

ISBN-13: 1139855883

DOWNLOAD EBOOK

While many scientists are familiar with fractals, fewer are familiar with scale-invariance and universality which underlie the ubiquity of their shapes. These properties may emerge from the collective behaviour of simple fundamental constituents, and are studied using statistical field theories. Initial chapters connect the particulate perspective developed in the companion volume, to the coarse grained statistical fields studied here. Based on lectures taught by Professor Kardar at MIT, this textbook demonstrates how such theories are formulated and studied. Perturbation theory, exact solutions, renormalization groups, and other tools are employed to demonstrate the emergence of scale invariance and universality, and the non-equilibrium dynamics of interfaces and directed paths in random media are discussed. Ideal for advanced graduate courses in statistical physics, it contains an integrated set of problems, with solutions to selected problems at the end of the book and a complete set available to lecturers at www.cambridge.org/9780521873413.


Fields of Color

Fields of Color

Author: Rodney A Brooks

Publisher: Independently Published

Published: 2010-12-14

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Fields of Color explains Quantum Field Theory to a lay audience without equations. It shows how this often overlooked theory resolves the weirdness of Quantum Mechanics and the paradoxes of Relativity. The third edition contains a new solution to the measurement problem ("the most controversial problem in physics today") and shows the quantum basis for Einstein's famous E = mc2.


Classical Dynamics: A Modern Perspective

Classical Dynamics: A Modern Perspective

Author: E C George Sudarshan

Publisher: World Scientific Publishing Company

Published: 2015-10-08

Total Pages: 612

ISBN-13: 9814713899

DOWNLOAD EBOOK

Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of dynamical systems is discussed in detail, and Poisson brackets are developed as a realization of Lie brackets. Other topics include treatments of classical spin, elementary relativistic systems in the classical context, irreducible realizations of the Galileo and Poincaré groups, and hydrodynamics as a Galilean field theory. Students will also find that this approach that deals with problems of manifest covariance, the no-interaction theorem in Hamiltonian mechanics and the structure of action-at-a-distance theories provides all the essential preparatory groundwork for a passage to quantum field theory.This reprinting of the original text published in 1974 is a testimony to the vitality of the contents that has remained relevant over nearly half a century.


Condensed Matter Field Theory

Condensed Matter Field Theory

Author: Alexander Altland

Publisher: Cambridge University Press

Published: 2010-03-11

Total Pages: 785

ISBN-13: 0521769752

DOWNLOAD EBOOK

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.