Nuclear Physics

Nuclear Physics

Author: National Research Council

Publisher: National Academies Press

Published: 2013-02-25

Total Pages: 263

ISBN-13: 0309260434

DOWNLOAD EBOOK

The principal goals of the study were to articulate the scientific rationale and objectives of the field and then to take a long-term strategic view of U.S. nuclear science in the global context for setting future directions for the field. Nuclear Physics: Exploring the Heart of Matter provides a long-term assessment of an outlook for nuclear physics. The first phase of the report articulates the scientific rationale and objectives of the field, while the second phase provides a global context for the field and its long-term priorities and proposes a framework for progress through 2020 and beyond. In the second phase of the study, also developing a framework for progress through 2020 and beyond, the committee carefully considered the balance between universities and government facilities in terms of research and workforce development and the role of international collaborations in leveraging future investments. Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. Nuclear Physics: Exploring the Heart of Matter explains the research objectives, which include the desire not only to better understand the nature of matter interacting at the nuclear level, but also to describe the state of the universe that existed at the big bang. This report explains how the universe can now be studied in the most advanced colliding-beam accelerators, where strong forces are the dominant interactions, as well as the nature of neutrinos.


Nuclear Physics in a Nutshell

Nuclear Physics in a Nutshell

Author: Carlos A. Bertulani

Publisher: Princeton University Press

Published: 2007-04-03

Total Pages: 488

ISBN-13: 1400839327

DOWNLOAD EBOOK

Nuclear Physics in a Nutshell provides a clear, concise, and up-to-date overview of the atomic nucleus and the theories that seek to explain it. Bringing together a systematic explanation of hadrons, nuclei, and stars for the first time in one volume, Carlos A. Bertulani provides the core material needed by graduate and advanced undergraduate students of physics to acquire a solid understanding of nuclear and particle science. Nuclear Physics in a Nutshell is the definitive new resource for anyone considering a career in this dynamic field. The book opens by setting nuclear physics in the context of elementary particle physics and then shows how simple models can provide an understanding of the properties of nuclei, both in their ground states and excited states, and also of the nature of nuclear reactions. It then describes: nuclear constituents and their characteristics; nuclear interactions; nuclear structure, including the liquid-drop model approach, and the nuclear shell model; and recent developments such as the nuclear mean-field and the nuclear physics of very light nuclei, nuclear reactions with unstable nuclear beams, and the role of nuclear physics in energy production and nucleosynthesis in stars. Throughout, discussions of theory are reinforced with examples that provide applications, thus aiding students in their reading and analysis of current literature. Each chapter closes with problems, and appendixes address supporting technical topics.


Techniques for Nuclear and Particle Physics Experiments

Techniques for Nuclear and Particle Physics Experiments

Author: William R. Leo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 385

ISBN-13: 3642579205

DOWNLOAD EBOOK

A treatment of the experimental techniques and instrumentation most often used in nuclear and particle physics experiments as well as in various other experiments, providing useful results and formulae, technical know-how and informative details. This second edition has been revised, while sections on Cherenkov radiation and radiation protection have been updated and extended.


Basic Ideas and Concepts in Nuclear Physics, An Introductory Approach

Basic Ideas and Concepts in Nuclear Physics, An Introductory Approach

Author: Kris L. G. Heyde

Publisher: CRC Press

Published: 1994-09-22

Total Pages: 448

ISBN-13: 9780750303002

DOWNLOAD EBOOK

This book proposal was originally forwarded from Andrew Durnell in 1991. It is different to the competition in style, progressing logically from general nuclear properties to nuclear structure, and in content, choosing to treat the major topics in sufficient depth for the student to obtain further understanding. The logical approach, linking general nuclear properties and nuclear structure is a benefit. The careful selection of topics, well-chosen illustrations, box features containing recent research examples and results, and tested problems, together provide a complete introduction to the major concepts and ideas required to understand nuclear physics. The author is careful throughout to keep nuclear physics in context with other disciplines, and to present the subject area as dynamic and interesting, through the use of box features. Series Editor Comment "advanced text suitable for final year courses and for introductory postgraduate studies" (Hamilton) "the range and depth of cover appear ideal and Heyde's approach is excellent ... a good teacher and text follows very much his style ... he also looks forward to the frontiers ... important in a (post) graduate text ... a student can see where his own particular topic may fit in ... many texts are far removed from research ... wealth and choice of figures ... good diagrams can do a lot for a text ... level of mathematics will ensure that it can be widely used"


Nuclear Physics

Nuclear Physics

Author: National Research Council

Publisher: National Academies Press

Published: 1999-03-31

Total Pages: 222

ISBN-13: 0309173663

DOWNLOAD EBOOK

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.


Fundamentals of Nuclear Physics

Fundamentals of Nuclear Physics

Author: Noboru Takigawa

Publisher: Springer

Published: 2017-01-12

Total Pages: 277

ISBN-13: 4431553789

DOWNLOAD EBOOK

This book introduces the current understanding of the fundamentals of nuclear physics by referring to key experimental data and by providing a theoretical understanding of principal nuclear properties. It primarily covers the structure of nuclei at low excitation in detail. It also examines nuclear forces and decay properties. In addition to fundamentals, the book treats several new research areas such as non-relativistic as well as relativistic Hartree–Fock calculations, the synthesis of super-heavy elements, the quantum chromodynamics phase diagram, and nucleosynthesis in stars, to convey to readers the flavor of current research frontiers in nuclear physics. The authors explain semi-classical arguments and derivation of its formulae. In these ways an intuitive understanding of complex nuclear phenomena is provided. The book is aimed at graduate school students as well as junior and senior undergraduate students and postdoctoral fellows. It is also useful for researchers to update their knowledge of diverse fields of nuclear structure. The book explains how basic physics such as quantum mechanics and statistical physics, as well as basic physical mathematics, is used to describe nuclear phenomena. A number of questions are given from place to place as supplements to the text.


From Nucleons to Nucleus

From Nucleons to Nucleus

Author: Jouni Suhonen

Publisher: Springer Science & Business Media

Published: 2007-04-22

Total Pages: 655

ISBN-13: 3540488618

DOWNLOAD EBOOK

From Nucleons to Nucleus deals with single-particle and collective features of spherical nuclei. Each nuclear model is introduced and derived in detail. The formalism is then applied to light and medium-heavy nuclei in worked-out examples, and finally the acquired skills are strengthened by a wide selection of exercises, many relating the models to experimental data. Nuclear properties are discussed using particles, holes and quasi-particles. From Nucleons to Nucleus is based on lectures on nuclear physics given by the author, and serves well as a textbook for advanced students. Researchers too will appreciate it as a well-balanced reference to theoretical nuclear physics.


An Advanced Course in Computational Nuclear Physics

An Advanced Course in Computational Nuclear Physics

Author: Morten Hjorth-Jensen

Publisher: Springer

Published: 2017-05-09

Total Pages: 654

ISBN-13: 3319533363

DOWNLOAD EBOOK

This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the computation of the equation of state for neutron star matter. The lectures presented provide an in-depth exposition of the underlying theoretical and algorithmic approaches as well details of the numerical implementation of the methods discussed. Several also include links to numerical software and benchmark calculations, which readers can use to develop their own programs for tackling challenging nuclear many-body problems.


Modern Atomic and Nuclear Physics

Modern Atomic and Nuclear Physics

Author: Fujia Yang

Publisher: World Scientific

Published: 2010

Total Pages: 812

ISBN-13: 9814277169

DOWNLOAD EBOOK

"The textbook itself is the culmination of the authors' many years of teaching and research in atomic physics, nuclear and particle physics, and modern physics. It is also a crystallization of their intense passion and strong interest in the history of physics and the philosophy of science. Together with the solution manual which presents solutions to many end-of-chapter problems in the textbook, they are a valuable resource to the instructors and students working in the modern atomic field."--Publisher's website.


Theory of Nuclear Reactions

Theory of Nuclear Reactions

Author: Peter Fröbrich

Publisher: Oxford University Press on Demand

Published: 1996

Total Pages: 476

ISBN-13: 9780198537830

DOWNLOAD EBOOK

This textbook was written because the authors failed to find a comprehensive text for a course on non-relativistic nuclear reactions. The book combines a thorough theoretical approach with applications to recent experimental results. The main formalisms used to describe nuclear reactions areexplained clearly and coherently, and the reader is led from basic laws to the final formulae used to calculate measurable quantities. Topics treated include quantal and semi-classical potential scattering, the formal theory of nuclear reactions, including the theory of the optical model, anddirect reactions and coupled-channel systems. Also included are compound nucleus reactions and fusion, dissipation fluctuations in deep-inelastic collisions, fusion, and heavy-ion induced fission. The book will be welcomed by lecturers, graduate students, and researchers in nuclear and atomicphysics.