The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Persistent Phosphors 3¿, held during the 211th meeting of The Electrochemical Society, in Chicago, IL, from May 6 to 11, 2007.
Persistent Phosphors: From Fundamentals to Applications provides an introduction to the key synthesis methods, characterization methods, physical mechanisms, and applications of this important luminescent materials system. The book covers basic persistent phosphorescence, introducing concepts such as emission, luminescence, phosphorescence, persistent phosphorescence and the development of persistent phosphors. Then, synthesis methods are reviewed and the connections between synthesis methods and improved materials properties are discussed. Characterization methods to investigate the trapping and de-trapping mechanism are also presented. Other sections cover the theoretical framework and energy band engineering models and materials with a focus on activators, hosts, emission bands and excitation bands. Finally, the most relevant applications of persistent phosphors are included for use in displays, safety signs, bio-labels and energy. Persistent Phosphors is an invaluable reference for materials scientists and engineers in academia and R&D. It is a key resource for chemists and physicists. - Presents characterization techniques to reveal the photophysical and photochemical properties of defects for this important category of luminescent materials - Discusses the structural role of defects in polycrystals and the capture-storing-migration-release progress of excited carriers - Demonstrates the synthesis routes and potential applications for persistent phosphor materials
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on ‘Novel Phosphors, Synthesis, and Applications’ provides the descriptions of synthesis and optical properties of phosphors used in different applications, including the novel phosphors for some newly developed applications. The chapters in this book cover: Various LED-based phosphors and their synthesis and applications Ingenious integrated smart phosphors and their novel optoelectronic and photonic devices Quantum dot, single crystalline, and glass phosphors Upconversion nanoparticles for super-resolution imaging and photonic and biological applications Special phosphors for laser, OLED, energy storage, quantum cutting, thermometry, photosynthesis, AC-driven LED, and solar cells
In this, the only up-to-date book on this key technology, the number-one expert in the field perfectly blends academic knowledge and industrial applications. Adopting a didactical approach, Professor Ronda discusses all the underlying principles, such that both researchers as well as beginners in the field will profit from this book. The focus is on the inorganic side and the phenomena of luminescence behind the manifold applications illustrated here, including displays, LEDs, lamps, and medical applications. Valuable reading for chemists and electrochemists, as well as materials scientists, those working in the optical and chemical industry, plus lamp and lighting manufacturers.
Rare earth–doped luminescent materials play an integral role in modern life because of their tremendous applications ranging from scintillators, color displays, fluorescent lamps, and intensifying screens to dosimetry of ionizing radiations. Written and edited by prominent luminescence researchers, this book details cutting-edge research on luminescence materials and is illustrated throughout with excellent figures and references. It will appeal to anyone involved in luminescence research and its applications, especially advanced undergraduate-, graduate-, and postgraduate-level students of spectroscopy, solid state physics, luminescence, material synthesis, and optical properties and researchers working on the synthesis of optical materials, the characterization of luminescence materials, solid state lighting, radiation dosimetry luminescence, and phosphor applications.
This book gives an overview on the fundamentals and recent developments in the field of luminescent materials. Starting from the definitions and properties of phosphors, novel application areas as well as spectroscopic methods for characterization will be described. The reader will benefit from the vast knowledge of the authors with backgrounds in industry as well as academia.
This book introduces readers to fundamental information on phosphor and quantum dots. It comprehensively reviews the latest research advances in and applications of fluoride phosphors, oxide phosphors, nitridosilicate phosphors and various quantum dot materials. Phosphors and phosphor-based quantum dot materials have recently gained considerable scientific interest due to their wide range of applications in lighting, displays, medical and telecommunication technologies. This work will be of great interest to researchers and graduate students in materials sciences and chemistry who wish to learn more about the principles, synthesis and analysis of phosphors and quantum dot materials.
This book provides fundamental knowledge of ceramics science and technology in a compact volume. Based on inorganic chemistry, it is intended as a reader for graduate students and young researchers beginning work in ceramics. The importance of the book is that it provides a scientific understanding of structure, properties, and processing from the chemical aspect, leading to creation of future ceramics. Ceramics have high hardness, strength, thermal and chemical stability, as well as various electromagnetic functions. To take full advantage of ceramics, their use has been advanced to engineering and electronic ceramics. Most ceramics have been fabricated by powder processing, and new technologies have also evolved such as CVD and sol-gel methods: new ceramics aimed at new functions of highly pure oxides and artificial nitrides, carbides, and borides; fine ceramics focused on precise control of composition and microstructure; and design of unique morphology, such as nanoparticles, nanofibers, nanosheets, mesoporous materials, and hybrids. Materials are composed of atoms and molecules. They are assembled into crystals and are amorphous, leading to 3-D micro/nano structures. In addition to the topics described above, this book shows the importance of chemistry for materials design at the nanometer scale, and that chemistry develops new fields of environment, energy, informatics, biomaterials, and other areas.
This new book highlights the link between the luminescence phenomena of phosphors used in different displays. Both fluorescence (used in display phosphors) and phosphorescence (used in after glow phosphors and storage phosphors) mechanisms and the efforts made in phosphor synthesis to reduce the interference of one on another are dealt with in detail.