Periodic Orbits in the Elliptic Restricted Three-body Problem
Author: R. A. Broucke
Publisher:
Published: 1969
Total Pages: 144
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: R. A. Broucke
Publisher:
Published: 1969
Total Pages: 144
ISBN-13:
DOWNLOAD EBOOKAuthor: Victory Szebehely
Publisher: Elsevier
Published: 2012-12-02
Total Pages: 685
ISBN-13: 0323143466
DOWNLOAD EBOOKTheory of Orbits: The Restricted Problem of Three Bodies is a 10-chapter text that covers the significance of the restricted problem of three bodies in analytical dynamics, celestial mechanics, and space dynamics. The introductory part looks into the use of three essentially different approaches to dynamics, namely, the qualitative, the quantitative, and the formalistic. The opening chapters consider the formulation of equations of motion in inertial and in rotating coordinate systems, as well as the reductions of the problem of three bodies and the corresponding streamline analogies. These topics are followed by discussions on the regularization and writing of equations of motion in a singularity-free systems; the principal qualitative aspect of the restricted problem of the curves of zero velocity; and the motion and nonlinear stability in the neighborhood of libration points. This text further explores the principles of Hamiltonian dynamics and its application to the restricted problem in the extended phase space. A chapter treats the problem of two bodies in a rotating coordinate system and treats periodic orbits in the restricted problem. Another chapter focuses on the comparison of the lunar and interplanetary orbits in the Soviet and American literature. The concluding chapter is devoted to modifications of the restricted problem, such as the elliptic, three-dimensional, and Hill's problem. This book is an invaluable source for astronomers, engineers, and mathematicians.
Author: Wang Sang Koon
Publisher: Springer
Published: 2011-06-01
Total Pages: 336
ISBN-13: 9780387495156
DOWNLOAD EBOOKThis book considers global solutions to the restricted three-body problem from a geometric point of view. The authors seek dynamical channels in the phase space which wind around the planets and moons and naturally connect them. These low energy passageways could slash the amount of fuel spacecraft need to explore and develop our solar system. In order to effectively exploit these passageways, the book addresses the global transport. It goes beyond the traditional scope of libration point mission design, developing tools for the design of trajectories which take full advantage of natural three or more body dynamics, thereby saving precious fuel and gaining flexibility in mission planning. This is the key for the development of some NASA mission trajectories, such as low energy libration point orbit missions (e.g., the sample return Genesis Discovery Mission), low energy lunar missions and low energy tours of outer planet moon systems, such as a mission to tour and explore in detail the icy moons of Jupiter. This book can serve as a valuable resource for graduate students and advanced undergraduates in applied mathematics and aerospace engineering, as well as a manual for practitioners who work on libration point and deep space missions in industry and at government laboratories. the authors include a wealth of background material, but also bring the reader up to a portion of the research frontier.
Author: Urs Frauenfelder
Publisher: Springer
Published: 2018-08-29
Total Pages: 381
ISBN-13: 3319722786
DOWNLOAD EBOOKThe book serves as an introduction to holomorphic curves in symplectic manifolds, focusing on the case of four-dimensional symplectizations and symplectic cobordisms, and their applications to celestial mechanics. The authors study the restricted three-body problem using recent techniques coming from the theory of pseudo-holomorphic curves. The book starts with an introduction to relevant topics in symplectic topology and Hamiltonian dynamics before introducing some well-known systems from celestial mechanics, such as the Kepler problem and the restricted three-body problem. After an overview of different regularizations of these systems, the book continues with a discussion of periodic orbits and global surfaces of section for these and more general systems. The second half of the book is primarily dedicated to developing the theory of holomorphic curves - specifically the theory of fast finite energy planes - to elucidate the proofs of the existence results for global surfaces of section stated earlier. The book closes with a chapter summarizing the results of some numerical experiments related to finding periodic orbits and global surfaces of sections in the restricted three-body problem. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Author: Howard D. Curtis
Publisher: Elsevier
Published: 2009-10-26
Total Pages: 740
ISBN-13: 0080887848
DOWNLOAD EBOOKOrbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. - NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions - NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 - New examples and homework problems
Author: Henry E. Kandrup
Publisher:
Published: 2006
Total Pages:
ISBN-13:
DOWNLOAD EBOOKAuthor: Edmund Taylor Whittaker
Publisher:
Published: 1904
Total Pages: 416
ISBN-13:
DOWNLOAD EBOOKAuthor: Jurgen Moser
Publisher: Princeton University Press
Published: 2016-03-02
Total Pages: 216
ISBN-13: 1400882699
DOWNLOAD EBOOKFor centuries, astronomers have been interested in the motions of the planets and in methods to calculate their orbits. Since Newton, mathematicians have been fascinated by the related N-body problem. They seek to find solutions to the equations of motion for N masspoints interacting with an inverse-square-law force and to determine whether there are quasi-periodic orbits or not. Attempts to answer such questions have led to the techniques of nonlinear dynamics and chaos theory. In this book, a classic work of modern applied mathematics, Jürgen Moser presents a succinct account of two pillars of the theory: stable and chaotic behavior. He discusses cases in which N-body motions are stable, covering topics such as Hamiltonian systems, the (Moser) twist theorem, and aspects of Kolmogorov-Arnold-Moser theory. He then explores chaotic orbits, exemplified in a restricted three-body problem, and describes the existence and importance of homoclinic points. This book is indispensable for mathematicians, physicists, and astronomers interested in the dynamics of few- and many-body systems and in fundamental ideas and methods for their analysis. After thirty years, Moser's lectures are still one of the best entrées to the fascinating worlds of order and chaos in dynamics.
Author: Kenneth R. Meyer
Publisher: Springer Science & Business Media
Published: 1999-11-17
Total Pages: 172
ISBN-13: 9783540666301
DOWNLOAD EBOOKLecture Notes in Mathematics This series reports on new developments in mathematical research and teaching - quickly, informally and at a high level. The type of material considered for publication includes 1. Research monographs 2. Lectures on a new field or presentations of a new angle in a classical field 3. Summer schools and intensive courses on topics of current research Texts which are out of print but still in demand may also be considered. The timeliness of a manuscript is sometimes more important than its form, which might be preliminary or tentative. Details of the editorial policy can be found on the inside front-cover of a current volume. Manuscripts should be submitted in camera-ready form according to Springer-Verlag's specification: technical instructions will be sent on request. TEX macros may be found at: http://www.springer.de/math/authors/b-tex.html Select the version of TEX you use and then click on "Monographs". A subject index should be included. We recommend contacting the publisher or the series editors at an early stage of your project. Addresses are given on the inside back-cover.
Author: Amadeu Delshams
Publisher: American Mathematical Soc.
Published: 2006
Total Pages: 158
ISBN-13: 0821838245
DOWNLOAD EBOOKBeginning by introducing a geometric mechanism for diffusion in a priori unstable nearly integrable dynamical systems. This book is based on the observation that resonances, besides destroying the primary KAM tori, create secondary tori and tori of lower dimension. It argues that these objects created by resonances can be incorporated in transition chains taking the place of the destroyed primary KAM tori.The authors establish rigorously the existence of this mechanism in a simplemodel that has been studied before. The main technique is to develop a toolkit to study, in a unified way, tori of different topologies and their invariant manifolds, their intersections as well as shadowing properties of these bi-asymptotic orbits. This toolkit is based on extending and unifyingstandard techniques. A new tool used here is the scattering map of normally hyperbolic invariant manifolds.The model considered is a one-parameter family, which for $\varepsilon = 0$ is an integrable system. We give a small number of explicit conditions the jet of order $3$ of the family that, if verified imply diffusion. The conditions are just that some explicitely constructed functionals do not vanish identically or have non-degenerate critical points, etc.An attractive feature of themechanism is that the transition chains are shorter in the places where the heuristic intuition and numerical experimentation suggests that the diffusion is strongest.