High Temperature Gas-cooled Reactors

High Temperature Gas-cooled Reactors

Author: Tetsuaki Takeda

Publisher: Academic Press

Published: 2021-02-24

Total Pages: 500

ISBN-13: 012821032X

DOWNLOAD EBOOK

High-Temperature Gas Reactors is the fifth volume in the JSME Series on Thermal and Nuclear Power Generation. Series Editor Yasuo Koizumi and his Volume editors Tetsuaki Takeda and Yoshiyuki Inagaki present the latest research on High-Temperature Gas Reactor (HTGR) development and utilization, beginning with an analysis of the history of HTGRs. A detailed analysis of HTGR design features, including reactor core design, cooling tower design, pressure vessel design, I&C factors and safety design, provides readers with a solid understanding of how to develop efficient and safe HTGR within a nuclear power plant.The authors combine their knowledge to present a guide on the safety of HTGRs throughout the entire reactor system, drawing on their unique experience to pass on lessons learned and best practices to support professionals and researchers in their design and operation of these advanced reactor types. Case studies of critical testing carried out by the authors provide the reader with firsthand information on how to conduct tests safely and effectively and an understanding of which responses are required in unexpected incidents to achieve their research objectives. An analysis of technologies and systems in development and testing stages offer the reader a look to the future of HTGRs and help to direct and inform their further research in heat transfer, fluid-dynamics, fuel options and advanced reactor facility selection.This volume is of interest for nuclear and thermal energy engineers and researchers focusing on HTGRs, HTGR plant designers and operators, regulators, post graduate students of nuclear engineering, national labs, government officials and agencies in power and energy policy and regulations. - Written by the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers and draws upon their combined wealth of knowledge and experience - Includes real examples and case studies from Japan, the US and Europe to provide a deeper learning opportunity with practical benefits - Considers the societal impact and sustainability concerns and goals throughout the discussion - Includes safety factors and considerations, as well as unique results from performance testing of HTGR systems


Advances in High Temperature Gas Cooled Reactor Fuel Technology

Advances in High Temperature Gas Cooled Reactor Fuel Technology

Author: International Atomic Energy Agency

Publisher:

Published: 2012-06

Total Pages: 639

ISBN-13: 9789201253101

DOWNLOAD EBOOK

This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.


Modular High-temperature Gas-cooled Reactor Power Plant

Modular High-temperature Gas-cooled Reactor Power Plant

Author: Kurt Kugeler

Publisher: Springer

Published: 2018-10-05

Total Pages: 903

ISBN-13: 3662577127

DOWNLOAD EBOOK

"Modular High-temperature Gas-cooled Reactor Power Plant" introduces the power plants driven by modular high temperature gas-cooled reactors (HTR), which are characterized by their inherent safety features and high output temperatures. HTRs have the potential to be adopted near demand side to supply both electricity and process heat, directly replacing conventional fossil fuels. The world is confronted with two dilemmas in the energy sector, namely climate change and energy supply security. HTRs have the potential to significantly alleviate these concerns. This book will provide readers with a thorough understanding of HTRs, their history, principles, and fields of application. The book is intended for researchers and engineers involved with nuclear engineering and energy technology.


Storage and Hybridization of Nuclear Energy

Storage and Hybridization of Nuclear Energy

Author: Hitesh Bindra

Publisher: Academic Press

Published: 2018-11-22

Total Pages: 302

ISBN-13: 0128139765

DOWNLOAD EBOOK

Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy provides a unique analysis of the storage and hybridization of nuclear and renewable energy. Editor Bindra and his team of expert contributors present various global methodologies to obtain the techno-economic feasibility of the integration of storage or hybrid cycles in nuclear power plants. Aimed at those studying, researching and working in the nuclear engineering field, this book offers nuclear reactor technology vendors, nuclear utilities workers and regulatory commissioners a very unique resource on how to access reliable, flexible and clean energy from variable-generation. - Presents a unique view on the technologies and systems available to integrate renewables and nuclear energy - Provides insights into the different methodologies and technologies currently available for the storage of energy - Includes case studies from well-known experts working on specific integration concepts around the world


Comprehensive Nuclear Materials

Comprehensive Nuclear Materials

Author:

Publisher: Elsevier

Published: 2020-07-22

Total Pages: 4871

ISBN-13: 0081028660

DOWNLOAD EBOOK

Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field