This book outlines a set of issues that are critical to all of parallel architecture--communication latency, communication bandwidth, and coordination of cooperative work (across modern designs). It describes the set of techniques available in hardware and in software to address each issues and explore how the various techniques interact.
From Multicores and GPUs to Petascale. Parallel computing technologies have brought dramatic changes to mainstream computing the majority of todays PCs, laptops and even notebooks incorporate multiprocessor chips with up to four processors. Standard components are increasingly combined with GPUs Graphics Processing Unit, originally designed for high-speed graphics processing, and FPGAs Free Programmable Gate Array to build parallel computers with a wide spectrum of high-speed processing functions. The scale of this powerful hardware is limited only by factors such as energy consumption and thermal control. However, in addition to"
Teaching fundamental design concepts and the challenges of emerging technology, this textbook prepares students for a career designing the computer systems of the future. In-depth coverage of complexity, power, reliability and performance, coupled with treatment of parallelism at all levels, including ILP and TLP, provides the state-of-the-art training that students need. The whole gamut of parallel architecture design options is explained, from core microarchitecture to chip multiprocessors to large-scale multiprocessor systems. All the chapters are self-contained, yet concise enough that the material can be taught in a single semester, making it perfect for use in senior undergraduate and graduate computer architecture courses. The book is also teeming with practical examples to aid the learning process, showing concrete applications of definitions. With simple models and codes used throughout, all material is made open to a broad range of computer engineering/science students with only a basic knowledge of hardware and software.
This book focuses on the theoretical and practical aspects of parallel programming systems for today's high performance multi-core processors and discusses the efficient implementation of key algorithms needed to implement parallel programming models. Such implementations need to take into account the specific architectural aspects of the underlying computer architecture and the features offered by the execution environment. This book briefly reviews key concepts of modern computer architecture, focusing particularly on the performance of parallel codes as well as the relevant concepts in parallel programming models. The book then turns towards the fundamental algorithms used to implement the parallel programming models and discusses how they interact with modern processors. While the book will focus on the general mechanisms, we will mostly use the Intel processor architecture to exemplify the implementation concepts discussed but will present other processor architectures where appropriate. All algorithms and concepts are discussed in an easy to understand way with many illustrative examples, figures, and source code fragments. The target audience of the book is students in Computer Science who are studying compiler construction, parallel programming, or programming systems. Software developers who have an interest in the core algorithms used to implement a parallel runtime system, or who need to educate themselves for projects that require the algorithms and concepts discussed in this book will also benefit from reading it. You can find the source code for this book at https://github.com/parallel-runtimes/lomp.
This book introduces the state-of-the-art in research in parallel and distributed embedded systems, which have been enabled by developments in silicon technology, micro-electro-mechanical systems (MEMS), wireless communications, computer networking, and digital electronics. These systems have diverse applications in domains including military and defense, medical, automotive, and unmanned autonomous vehicles. The emphasis of the book is on the modeling and optimization of emerging parallel and distributed embedded systems in relation to the three key design metrics of performance, power and dependability. Key features: Includes an embedded wireless sensor networks case study to help illustrate the modeling and optimization of distributed embedded systems. Provides an analysis of multi-core/many-core based embedded systems to explain the modeling and optimization of parallel embedded systems. Features an application metrics estimation model; Markov modeling for fault tolerance and analysis; and queueing theoretic modeling for performance evaluation. Discusses optimization approaches for distributed wireless sensor networks; high-performance and energy-efficient techniques at the architecture, middleware and software levels for parallel multicore-based embedded systems; and dynamic optimization methodologies. Highlights research challenges and future research directions. The book is primarily aimed at researchers in embedded systems; however, it will also serve as an invaluable reference to senior undergraduate and graduate students with an interest in embedded systems research.
A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.
With the growing need for effective communication networks in telecommunications and distributed computer systems, system designers need to be aware of the developments of sophisticated models for evaluating system performance. This book is ideally designed for performance engineers and system designers with the main focus of the text on queueing network models.
Programming is now parallel programming. Much as structured programming revolutionized traditional serial programming decades ago, a new kind of structured programming, based on patterns, is relevant to parallel programming today. Parallel computing experts and industry insiders Michael McCool, Arch Robison, and James Reinders describe how to design and implement maintainable and efficient parallel algorithms using a pattern-based approach. They present both theory and practice, and give detailed concrete examples using multiple programming models. Examples are primarily given using two of the most popular and cutting edge programming models for parallel programming: Threading Building Blocks, and Cilk Plus. These architecture-independent models enable easy integration into existing applications, preserve investments in existing code, and speed the development of parallel applications. Examples from realistic contexts illustrate patterns and themes in parallel algorithm design that are widely applicable regardless of implementation technology. The patterns-based approach offers structure and insight that developers can apply to a variety of parallel programming models Develops a composable, structured, scalable, and machine-independent approach to parallel computing Includes detailed examples in both Cilk Plus and the latest Threading Building Blocks, which support a wide variety of computers