Performance-Based Seismic Design of Concrete Structures and Infrastructures

Performance-Based Seismic Design of Concrete Structures and Infrastructures

Author: Plevris, Vagelis

Publisher: IGI Global

Published: 2017-02-14

Total Pages: 338

ISBN-13: 1522520902

DOWNLOAD EBOOK

Solid design and craftsmanship are a necessity for structures and infrastructures that must stand up to natural disasters on a regular basis. Continuous research developments in the engineering field are imperative for sustaining buildings against the threat of earthquakes and other natural disasters. Performance-Based Seismic Design of Concrete Structures and Infrastructures is an informative reference source on all the latest trends and emerging data associated with structural design. Highlighting key topics such as seismic assessments, shear wall structures, and infrastructure resilience, this is an ideal resource for all academicians, students, professionals, and researchers that are seeking new knowledge on the best methods and techniques for designing solid structural designs.


Seismic Performance of Concrete Buildings

Seismic Performance of Concrete Buildings

Author: Liviu Crainic

Publisher: CRC Press

Published: 2012-12-10

Total Pages: 260

ISBN-13: 0203096398

DOWNLOAD EBOOK

This book examines and presents essential aspects of the behavior, analysis, design and detailing of reinforced concrete buildings subjected to strong seismic activity. Seismic design is an extremely complex problem that has seen spectacular development in the last decades. The present volume tries to show how the principles and methods of earthqua


Probabilistic performance-based seismic design

Probabilistic performance-based seismic design

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2012-05-07

Total Pages: 124

ISBN-13: 2883941084

DOWNLOAD EBOOK

In the last ten to fifteen years a vast amount of research has been undertaken to improve on earlier methods for analysing the seismic reliability of structures. These efforts focused on identifying aspects of prominent relevance and disregarding the inessential ones, with the goal of producing methods that are both more efficient and easier to use in practice. Today this goal can be said to be substantially achieved. During these years scientific activity covered all of the many aspects involved in such a multi-disciplinary problem, ranging from seismology, to geotechnics, to structural analysis and economy, all of them to be consistently organised into a probabilistic framework. As the output of this research was dispersed into a multitude of technical papers, fib Commission 7 thought it worthwhile to select the essential aspects of this large body of knowledge and to present them into a coherent and accessible document for structural engineers. To this end a task group of specialists was formed, whose qualifications come from their personal involvement in the above-mentioned developments throughout this period of time. From its inception the group decided that the bulletin should have had a distinct educational character and provide a clear overview of the methods available. The outcome is a compact volume that starts by introducing the concepts and definitions of performance-based engineering, continues with two chapters on assessment and design, respectively, presenting the methods in detail accompanied by illustrative examples, and concludes with an appendix with sample programming excerpts for their implementation. It is believed that at present fib Bulletin 68 represents a unique compendium on probabilistic performance-based seismic design.


Displacement-based Seismic Design of Reinforced Concrete Buildings

Displacement-based Seismic Design of Reinforced Concrete Buildings

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2003

Total Pages: 206

ISBN-13: 9782883940659

DOWNLOAD EBOOK

A brief summary of the history of seismic design as given in chapter 1, indicates that initially design was purely based on strength or force considerations. When the importance of displacement, however, became better appreciated, it was attempted to modify the existing force-based approach in order to include considerations of displacement, rather than to totally reconsider the procedure on a more rational basis. In the last decade, then, several researchers started pointing out this inconsistency, proposing displacement-based approaches for earthquake engineering evaluation and design, with the aim of providing improved reliability in the engineering process by more directly relating computed response and expected structural performance. The main objective of this report is to summarize, critically review and compare the displacement - based approaches proposed in the literature, thus favouring code implementation and practical use of rational and reliable methods. Chapter 2 Seismic performance and design objectives of this report introduces concepts of performance levels, seismic hazard representation, and the coupling of performance and hazard to define performance objectives. In fact, for displacement analysis to be relevant in the context of performance-based design, the structural engineer must select appropriate performance levels and seismic loadings. A critical review of some engineering limit states appropriate to the different performance levels is therefore proposed. In chapter 3 Conceptual basis for displacement-based earthquake resistant design, the fundamental principles associated with displacement of the ground during an earthquake and the effects, in terms of displacement, in the structure, are reviewed. The historical development guides the presentation with a review of general linear and nonlinear structural dynamics principles, general approaches to estimate displacement, for both ground and structure, and finally a general presentation of the means to measure and judge the appropriateness of the displacements of the structure in section. Chapter 4 Approaches and procedures for displacement-based design can be somehow considered the fundamental part of the report, since a critical summary of the displacement - based approaches proposed by different researchers is presented there. Displacement - based design may require specific characterization of the input ground motion, a topic addressed in Chapter 5 Seismic input. In general, various pertinent definitions of input motion for non-code format analysis are included, while peak ground parameters necessary for code base shear equations are only addressed as needed for the definition of motion for analysis. Chapter 6 Displacement capacity of members and systems addresses the fundamental problem of evaluating the inelastic displacement capacity of reinforced concrete members and realistic values of their effective cracked stiffness at yielding, including effects of shear and inclined cracking, anchorage slip, bar buckling and of load cycling. In Chapter 7 Application and evaluation of displacement-based approaches, some of the many different displacement based design procedures briefly introduced in Chapter 4 are applied to various case studies, identifying and discussing the difficulties a designer may encounter when trying to use displacement based design. Results for five different case studies designed in accordance with eight different displacement based design methods are presented. Although in general case studies are considered a useful but marginal part of a state of the art document, in this case it has to be noted that chapter 7 is possibly the most innovative and fundamental part of the whole report. The conclusions of chapter 7 are the fundamental and essential conclusions of the document and allow foreseeing a bright future for displacement - based design approaches. The state-of-art report has been elaborated over a period of 4 years by Task Group 7.2 Displacement-based design and assessment of fib Commission 7Seismic design, a truly international team of experts, representing the expertise and experience of all the important seismic regions of the world. In October 2002 the final draft of the Bulletin was presented to the public during the 1st fibCongress in Osaka. It was also there that it was approved by fib Commission 7Seismic Design.


Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society

Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society

Author: Matej Fischinger

Publisher: Springer

Published: 2014-07-15

Total Pages: 503

ISBN-13: 9401788758

DOWNLOAD EBOOK

The Bled workshops have traditionally produced reference documents providing visions for the future development of earthquake engineering as foreseen by leading researchers in the field. The participants of the 2011 workshop built on the tradition of these events initiated by Professors Fajfar and Krawinkler to honor their important research contributions and have now produced a book providing answers to crucial questions in today’s earthquake engineering: “What visible changes in the design practice have been brought about by performance-based seismic engineering? What are the critical needs for future advances? What actions should be taken to respond to those needs?” The key answer is that research interests should go beyond the narrow technical aspects and that the seismic resilience of society as a whole should become an essential part of the planning and design process. The book aims to provide essential guidelines for researchers, professionals and students in the field of earthquake engineering. It will also be of particular interest for all those working at insurance companies, governmental, civil protection and emergency management agencies that are responsible for assessing and planning community resilience. The introductory chapter of the book is based on the keynote presentation given at the workshop by the late Professor Helmut Krawinkler. As such, the book includes Helmut’s last and priceless address to the engineering community, together with his vision and advice for the future development of performance-based design, earthquake engineering and seismic risk management.


Performance Based Seismic Design for Tall Buildings

Performance Based Seismic Design for Tall Buildings

Author: Ramin Golesorkhi

Publisher:

Published: 2017-10-30

Total Pages: 116

ISBN-13: 9780939493562

DOWNLOAD EBOOK

Performance-Based Seismic Design (PBSD) is a structural design methodology that has become more common in urban centers around the world, particularly for the design of high-rise buildings. The primary benefit of PBSD is that it substantiates exceptions to prescribed code requirements, such as height limits applied to specific structural systems, and allows project teams to demonstrate higher performance levels for structures during a seismic event.However, the methodology also involves significantly more effort in the analysis and design stages, with verification of building performance required at multiple seismic demand levels using Nonlinear Response History Analysis (NRHA). The design process also requires substantial knowledge of overall building performance and analytical modeling, in order to proportion and detail structural systems to meet specific performance objectives.This CTBUH Technical Guide provides structural engineers, developers, and contractors with a general understanding of the PBSD process by presenting case studies that demonstrate the issues commonly encountered when using the methodology, along with their corresponding solutions. The guide also provides references to the latest industry guidelines, as applied in the western United States, with the goal of disseminating these methods to an international audience for the advancement and expansion of PBSD principles worldwide.