Perfect/Complete Scattering Experiments

Perfect/Complete Scattering Experiments

Author: Hans Kleinpoppen

Publisher: Springer Science & Business Media

Published: 2013-12-04

Total Pages: 350

ISBN-13: 3642405142

DOWNLOAD EBOOK

The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The `complete' experiment is, until today, hardly to perform. Therefore, much attention is paid to the results of state-of-the-art experiments providing detailed information on the process, and their comparison to the related theoretical approaches, just to mention relativistic multi-configurational Dirac-Fock, convergent close-coupling, Breit-Pauli R-matrix, or relativistic distorted wave approaches, as well as Green's operator methods. This book has been written in honor of Herbert Walther and his major contribution to the field but even to stimulate advanced Bachelor and Master students by demonstrating that obviously nowadays atomic and molecular scattering physics yields and gives a much exciting appreciation for further advancing the field.


Complete Scattering Experiments

Complete Scattering Experiments

Author: Uwe Becker

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 289

ISBN-13: 030647106X

DOWNLOAD EBOOK

The Hans Kleinpoppen Symposium on "Complete Scattering Experiments" th was held in honor of Hans Kleinpoppen’s 70 birthday. It took place in Il Ciocco, Italy. The symposium had two purposes: to present the work that Hans Kleinpoppen has done or initiated during his remarkable scientific career, and to bring people from various fields together who perform complete scattering experiments. Hans Kleinpoppen’s work included electron and photon impact experiments which were accompanied by studies of entangled states - a field of high current interest. Representatives from each of these fields gave excellent lectures on their particular subjects, and many discussions that started during the sessions were continued later in the relaxed atmosphere of the Il Ciocco resort. The breathtaking view of the beautiful landscape will be an unforg- table memory to all who participated in this extraordinary scientific event. The coherent and ideal combination of subject, people and location reflected the coherence of Hans Kleinpoppen’s aims and activities in science and life. We offer our grateful thanks to all contributers who made this volume such a worthy tribute to Hans Kleinpoppen. We also like to thank Rainer Hentges for the painstaking work to prepare this volume in its complete ready to print version. We are also grateful to the Royal Society of London and the Max– Planck–Gesellschaft who generous support of the Hans Kleinpoppen sym- sium made this marvelous meeting and this proceedings possible.


Advances in Atomic, Molecular, and Optical Physics

Advances in Atomic, Molecular, and Optical Physics

Author:

Publisher: Elsevier

Published: 2005-12-20

Total Pages: 605

ISBN-13: 0080456081

DOWNLOAD EBOOK

Benjamin Bederson contributed to the world of physics in many areas: in atomic physics, where he achieved renown by his scattering and polarizability experiments, as the Editor-in-Chief for the American Physical Society, where he saw the introduction of electronic publishing and a remarkable growth of the APS journals, with ever increasing world-wide contributions to these highly esteemed journals, and as the originator of a number of international physics conferences in the fields of atomic and collision physics, which are continuing to this day. Bederson was also a great teacher and university administrator. The first part of this volume of Advances in Atomic, Molecular, and Optical Physics (AAMOP), entitled Benjamin Bederson: Works, Comments and Legacies, contains articles written from a personal perspective. His days at Los Alamos during World War II, working on the A bomb, are recounted by V. Fitch. H. Walther writes on the time when both were editors of AAMOP. H. Lustig, E. Merzbacher and B. Crasemann, with whom Bederson had a long-term association at the American Physical Society, contribute their experiences, one of them in the style of a poem. C.D. Rice recalls his days when he was Dean of the Faculty of Arts and Science at NYU, and the education in physics that he received from Bederson, then Dean of the Graduate School. The contribution by R. Stuewer is on Bederson as physicist historian (his latest interest). N. Lane draws some parallels between "two civic scientists, Benjamin Bederson and the other Benjamin". The papers are introduced by H.H. Stroke, in an overview of Bederson's career. A biography and bibliography are included. The second part of the volume contains scientific articles on the Casimir effects (L. Spruch), dipole polarizabilities (X. Chu, A. Dalgarno), two-electron molecular bonds revisited (G. Chen, S.A. Chin, Y. Dou, K.T. Kapale, M. Kim, A.A. Svidzinsky, K. Uretkin, H. Xiong, M.O. Scully, and resonance fluorescence of two-level atoms (H. Walther). J. Pinard and H.H. Stroke review spectroscopy with radioactive atoms. T. Miller writes on electron attachment and detachment in gases, and, with H. Gould, on recent developments in the measurement of static electric dipole polarizabilities. R. Celotta and J.A. Stroscio's most recent work on trapping and moving atoms on surfaces is contributed here. C.C. Lin and J.B. Borrard's article is on electron-impact excitation cross sections. The late Edward Pollack wrote his last paper for this volume, Atomic and Ionic Collisions. L. Vuskovic and S. Popovi ́c write on atomic interactions in a weakly ionized gas and ionizing shock waves. The last scientific article is by H. Kleinpoppen, B. Lohmann, A. Grum-Grzhimailo and U. Becker on approaches to perfect/complete scattering in atomic and molecular physics. The book ends with an essay on teaching by R.E. Collins. - Benjamin Bederson - Atomic Physicist, Civil Scientist - The Physical Review and Its Editor - Los Alamos in World War II - View from Below - Physics in Poetry - Casimir Effects - Pedagogical Notes - Atomic Physics in Collisions, Polarizabilities, Gases, Atomic Physics and Radioactive Atoms - Molecular Bond Revisited - Resonance Fluorescence in 2-Level Atoms - Trapping and Moving Atoms on Surfaces


Computational Atomic Physics

Computational Atomic Physics

Author: Klaus Bartschat

Publisher: Springer

Published: 2013-06-29

Total Pages: 264

ISBN-13: 3642610102

DOWNLOAD EBOOK

Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.


Advances in Atomic, Molecular, and Optical Physics

Advances in Atomic, Molecular, and Optical Physics

Author: Paul R. Berman

Publisher: Academic Press

Published: 2011-10-03

Total Pages: 562

ISBN-13: 012385508X

DOWNLOAD EBOOK

Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field which is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts, and contain both relevant review material and detailed descriptions of important recent developments. International experts Comprehensive articles New developments


Quantum Metrology with Photoelectrons

Quantum Metrology with Photoelectrons

Author: Paul Hockett

Publisher: Morgan & Claypool Publishers

Published: 2018-04-20

Total Pages: 204

ISBN-13: 1681746875

DOWNLOAD EBOOK

Since the turn of the century, the increasing availability of photoelectron imaging experiments, along with the increasing sophistication of experimental techniques, and the availability of computational resources for analysis and numerics, has allowed for significant developments in such photoelectron metrology. Quantum Metrology with Photoelectrons, Volume 1: Foundations discusses the fundamental concepts along with recent and emerging applications. The core physics is that of photoionization, and Volume 1 addresses this topic. The foundational material is presented in part as a tutorial with extensive numerical examples and also in part as a collected reference to the relevant theoretical treatments from the literature for a range of cases. Topics are discussed with an eye to developing general quantum metrology schemes, in which full quantum state reconstruction of the photoelectron wavefunction is the goal. In many cases, code and/or additional resources are available online. Consequently, it is hoped that readers at all levels will find something of interest and that the material provides something rather different from existing textbooks.


Dynamical Processes in Atomic and Molecular Physics

Dynamical Processes in Atomic and Molecular Physics

Author: Gennadi Ogurtsov

Publisher: Bentham Science Publishers

Published: 2012

Total Pages: 128

ISBN-13: 1608052451

DOWNLOAD EBOOK

Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Recent theoretical developments as well as new discoveries and observations are discussed. the Book should be of interest to students studying atomic and molecular physics and specialists in related fields of science and technology.


Handbook of High-resolution Spectroscopy

Handbook of High-resolution Spectroscopy

Author: Martin Quack

Publisher: John Wiley & Sons

Published: 2011-09-26

Total Pages: 2236

ISBN-13: 0470066539

DOWNLOAD EBOOK

The field of High-Resolution Spectroscopy has been considerably extended and even redefined in some areas. Combining the knowledge of spectroscopy, laser technology, chemical computation, and experiments, Handbook of High-Resolution Spectroscopy provides a comprehensive survey of the whole field as it presents itself today, with emphasis on the recent developments. This essential handbook for advanced research students, graduate students, and researchers takes a systematic approach through the range of wavelengths and includes the latest advances in experiment and theory that will help and guide future applications. The first comprehensive survey in high-resolution molecular spectroscopy for over 15 years Brings together the knowledge of spectroscopy, laser technology, chemical computation and experiments Brings the reader up-to-date with the many advances that have been made in recent times Takes the reader through the range of wavelengths, covering all possible techniques such as Microwave Spectroscopy, Infrared Spectroscopy, Raman Spectroscopy, VIS, UV and VUV Combines theoretical, computational and experimental aspects Has numerous applications in a wide range of scientific domains Edited by two leaders in this field Provides an overview of rotational, vibration, electronic and photoelectron spectroscopy Volume 1 - Introduction: Fundamentals of Molecular Spectroscopy Volume 2 - High-Resolution Molecular Spectroscopy: Methods and Results Volume 3 - Special Methods & Applications


Springer Handbook of Atomic, Molecular, and Optical Physics

Springer Handbook of Atomic, Molecular, and Optical Physics

Author: Gordon W. F. Drake

Publisher: Springer Nature

Published: 2023-02-09

Total Pages: 1436

ISBN-13: 3030738930

DOWNLOAD EBOOK

Comprises a comprehensive reference source that unifies the entire fields of atomic molecular and optical (AMO) physics, assembling the principal ideas, techniques and results of the field. 92 chapters written by about 120 authors present the principal ideas, techniques and results of the field, together with a guide to the primary research literature (carefully edited to ensure a uniform coverage and style, with extensive cross-references). Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines. Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully-searchable CD- ROM version of the contents accompanies the handbook.