Pencils of Cubics and Algebraic Curves in the Real Projective Plane

Pencils of Cubics and Algebraic Curves in the Real Projective Plane

Author: Séverine Fiedler - Le Touzé

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 257

ISBN-13: 0429838255

DOWNLOAD EBOOK

Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP2. Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book’s second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert’s sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert’s sixteenth problem About the Author: Séverine Fiedler-le Touzé has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.


Pencils of Cubics and Algebraic Curves in the Real Projective Plane

Pencils of Cubics and Algebraic Curves in the Real Projective Plane

Author: Séverine Fiedler - Le Touzé

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 225

ISBN-13: 0429838247

DOWNLOAD EBOOK

Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP2. Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book’s second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert’s sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert’s sixteenth problem About the Author: Séverine Fiedler-le Touzé has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.


Algebraic Curves

Algebraic Curves

Author: Maxim E. Kazaryan

Publisher: Springer

Published: 2019-01-21

Total Pages: 237

ISBN-13: 3030029433

DOWNLOAD EBOOK

This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces. The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves – such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points – are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion. Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework


Geometry of Algebraic Curves

Geometry of Algebraic Curves

Author: Enrico Arbarello

Publisher: Springer

Published: 2013-08-30

Total Pages: 387

ISBN-13: 9781475753240

DOWNLOAD EBOOK

In recent years there has been enormous activity in the theory of algebraic curves. Many long-standing problems have been solved using the general techniques developed in algebraic geometry during the 1950's and 1960's. Additionally, unexpected and deep connections between algebraic curves and differential equations have been uncovered, and these in turn shed light on other classical problems in curve theory. It seems fair to say that the theory of algebraic curves looks completely different now from how it appeared 15 years ago; in particular, our current state of knowledge repre sents a significant advance beyond the legacy left by the classical geometers such as Noether, Castelnuovo, Enriques, and Severi. These books give a presentation of one of the central areas of this recent activity; namely, the study of linear series on both a fixed curve (Volume I) and on a variable curve (Volume II). Our goal is to give a comprehensive and self-contained account of the extrinsic geometry of algebraic curves, which in our opinion constitutes the main geometric core of the recent advances in curve theory. Along the way we shall, of course, discuss appli cations of the theory of linear series to a number of classical topics (e.g., the geometry of the Riemann theta divisor) as well as to some of the current research (e.g., the Kodaira dimension of the moduli space of curves).


Classical Algebraic Geometry

Classical Algebraic Geometry

Author: Igor V. Dolgachev

Publisher: Cambridge University Press

Published: 2012-08-16

Total Pages: 653

ISBN-13: 1139560786

DOWNLOAD EBOOK

Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.


Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable

Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable

Author: Rida T Farouki

Publisher: Springer Science & Business Media

Published: 2008-02-01

Total Pages: 725

ISBN-13: 3540733981

DOWNLOAD EBOOK

By virtue of their special algebraic structures, Pythagorean-hodograph (PH) curves offer unique advantages for computer-aided design and manufacturing, robotics, motion control, path planning, computer graphics, animation, and related fields. This book offers a comprehensive and self-contained treatment of the mathematical theory of PH curves, including algorithms for their construction and examples of their practical applications. It emphasizes the interplay of ideas from algebra and geometry and their historical origins and includes many figures, worked examples, and detailed algorithm descriptions.


3264 and All That

3264 and All That

Author: David Eisenbud

Publisher: Cambridge University Press

Published: 2016-04-14

Total Pages: 633

ISBN-13: 1107017084

DOWNLOAD EBOOK

3264, the mathematical solution to a question concerning geometric figures.


The Real Projective Plane

The Real Projective Plane

Author: H.S.M. Coxeter

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 236

ISBN-13: 1461227348

DOWNLOAD EBOOK

Along with many small improvements, this revised edition contains van Yzeren's new proof of Pascal's theorem (§1.7) and, in Chapter 2, an improved treatment of order and sense. The Sylvester-Gallai theorem, instead of being introduced as a curiosity, is now used as an essential step in the theory of harmonic separation (§3.34). This makes the logi cal development self-contained: the footnotes involving the References (pp. 214-216) are for comparison with earlier treatments, and to give credit where it is due, not to fill gaps in the argument. H.S.M.C. November 1992 v Preface to the Second Edition Why should one study the real plane? To this question, put by those who advocate the complex plane, or geometry over a general field, I would reply that the real plane is an easy first step. Most of the prop erties are closely analogous, and the real field has the advantage of intuitive accessibility. Moreover, real geometry is exactly what is needed for the projective approach to non· Euclidean geometry. Instead of introducing the affine and Euclidean metrics as in Chapters 8 and 9, we could just as well take the locus of 'points at infinity' to be a conic, or replace the absolute involution by an absolute polarity.


Geometry

Geometry

Author: Michele Audin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 361

ISBN-13: 3642561276

DOWNLOAD EBOOK

Geometry, this very ancient field of study of mathematics, frequently remains too little familiar to students. Michle Audin, professor at the University of Strasbourg, has written a book allowing them to remedy this situation and, starting from linear algebra, extend their knowledge of affine, Euclidean and projective geometry, conic sections and quadrics, curves and surfaces. It includes many nice theorems like the nine-point circle, Feuerbach's theorem, and so on. Everything is presented clearly and rigourously. Each property is proved, examples and exercises illustrate the course content perfectly. Precise hints for most of the exercises are provided at the end of the book. This very comprehensive text is addressed to students at upper undergraduate and Master's level to discover geometry and deepen their knowledge and understanding.


A Treatise on Algebraic Plane Curves

A Treatise on Algebraic Plane Curves

Author: Julian Lowell Coolidge

Publisher: Courier Corporation

Published: 2004-01-01

Total Pages: 554

ISBN-13: 9780486495767

DOWNLOAD EBOOK

A thorough introduction to the theory of algebraic plane curves and their relations to various fields of geometry and analysis. Almost entirely confined to the properties of the general curve, and chiefly employs algebraic procedure. Geometric methods are much employed, however, especially those involving the projective geometry of hyperspace. 1931 edition. 17 illustrations.