Ever since the seminal works on traveling waves and morphogenesis by Fisher, by Kolmogorov, Petrovski and Piscunov, and by Turing, scientists from many disciplines have been fascinated by questions concerning the formation of steady or dynamic patterns in reactive media. Contributions to this volume have been made by chemists, chemical engineers, mathematicians (both pure and applied), and physicists. The topics covered range from reports of experimental studies, through descriptions of numerical experiments, to rather abstract theoretical investigations, each exhibiting different aspects of a very diverse field.
This volume contains the proceedings of two related workshops held at The Fields Institute in February and March 1993. The workshops were an integral part of the thematic year in Dynamical Systems and Bifurcation Theory held during the 1992-1993 academic year. This volume covers the full spectrum of research involved in combining symmetry methods with dynamical systems and bifurcation theory, from the development of the mathematical theory in order to understand the underlying mechanisms to the application of this new mathematical theory, to partial differential equation models of realistic ph.
This book gives an introduction to the mathematical theory of cooperative behavior in active systems of various origins, both natural and artificial. It is based on a lecture course in synergetics which I held for almost ten years at the University of Moscow. The first volume deals mainly with the problems of pattern formation and the properties of self-organized regular patterns in distributed active systems. It also contains a discussion of distributed analog information processing which is based on the cooperative dynamics of active systems. The second volume is devoted to the stochastic aspects of self-organization and the properties of self-established chaos. I have tried to avoid delving into particular applications. The primary intention is to present general mathematical models that describe the principal kinds of coopera tive behavior in distributed active systems. Simple examples, ranging from chemical physics to economics, serve only as illustrations of the typical context in which a particular model can apply. The manner of exposition is more in the tradition of theoretical physics than of mathematics: Elaborate formal proofs and rigorous estimates are often replaced in the text by arguments based on an intuitive understanding of the relevant models. Because of the interdisciplinary nature of this book, its readers might well come from very diverse fields of endeavor. It was therefore desirable to minimize the re quired preliminary knowledge. Generally, a standard university course in differential calculus and linear algebra is sufficient.
Systems that generate new types of pattern such as discrete coupled systems, systems with global coupling, and combustion experiments were stressed, as were new types of pattern."--BOOK JACKET.
Systems with sub-processes evolving on many different time scales are ubiquitous in applications: chemical reactions, electro-optical and neuro-biological systems, to name just a few. This volume contains papers that expose the state of the art in mathematical techniques for analyzing such systems. Recently developed geometric ideas are highlighted in this work that includes a theory of relaxation-oscillation phenomena in higher dimensional phase spaces. Subtle exponentially small effects result from singular perturbations implicit in certain multiple time scale systems. Their role in the slow motion of fronts, bifurcations, and jumping between invariant tori are all explored here. Neurobiology has played a particularly stimulating role in the development of these techniques and one paper is directed specifically at applying geometric singular perturbation theory to reveal the synchrony in networks of neural oscillators.
This 121st IMA volume, entitled MATHEMATICAL MODELS FOR BIOLOGICAL PATTERN FORMATION is the first of a new series called FRONTIERS IN APPLICATION OF MATHEMATICS. The FRONTIERS volumes are motivated by IMA pro grams and workshops, but are specially planned and written to provide an entree to and assessment of exciting new areas for the application of mathematical tools and analysis. The emphasis in FRONTIERS volumes is on surveys, exposition and outlook, to attract more mathematicians and other scientists to the study of these areas and to focus efforts on the most important issues, rather than papers on the most recent research results aimed at an audience of specialists. The present volume of peer-reviewed papers grew out of the 1998-99 IMA program on "Mathematics in Biology," in particular the Fall 1998 em phasis on "Theoretical Problems in Developmental Biology and Immunol ogy." During that period there were two workshops on Pattern Formation and Morphogenesis, organized by Professors Murray, Maini and Othmer. James Murray was one of the principal organizers for the entire year pro gram. I am very grateful to James Murray for providing an introduction, and to Philip Maini and Hans Othmer for their excellent work in planning and preparing this first FRONTIERS volume. I also take this opportunity to thank the National Science Foundation, whose financial support of the IMA made the Mathematics in Biology pro gram possible.
USE THE ACTOR MODEL TO BUILD SIMPLER SYSTEMS WITH BETTER PERFORMANCE AND SCALABILITY Enterprise software development has been much more difficult and failure-prone than it needs to be. Now, veteran software engineer and author Vaughn Vernon offers an easier and more rewarding method to succeeding with Actor model. Reactive Messaging Patterns with the Actor Model shows how the reactive enterprise approach, Actor model, Scala, and Akka can help you overcome previous limits of performance and scalability, and skillfully address even the most challenging non-functional requirements. Reflecting his own cutting-edge work, Vernon shows architects and developers how to translate the longtime promises of Actor model into practical reality. First, he introduces the tenets of reactive software, and shows how the message-driven Actor model addresses all of them–making it possible to build systems that are more responsive, resilient, and elastic. Next, he presents a practical Scala bootstrap tutorial, a thorough introduction to Akka and Akka Cluster, and a full chapter on maximizing performance and scalability with Scala and Akka. Building on this foundation, you’ll learn to apply enterprise application and integration patterns to establish message channels and endpoints; efficiently construct, route, and transform messages; and build robust systems that are simpler and far more successful. Coverage Includes How reactive architecture replaces complexity with simplicity throughout the core, middle, and edges The characteristics of actors and actor systems, and how Akka makes them more powerful Building systems that perform at scale on one or many computing nodes Establishing channel mechanisms, and choosing appropriate channels for each application and integration challenge Constructing messages to clearly convey a sender’s intent in communicating with a receiver Implementing a Process Manager for your Domain-Driven Designs Decoupling a message’s source and destination, and integrating appropriate business logic into its router Understanding the transformations a message may experience in applications and integrations Implementing persistent actors using Event Sourcing and reactive views using CQRS Find unique online training on Domain-Driven Design, Scala, Akka, and other software craftsmanship topics using the for{comprehension} website at forcomprehension.com.
The present volume includes most of the material of the invited lectures delivered at the NATO Advanced Study Institute “Morphogenesis through the interplay of nonlinear chemical instabilities and elastic active media” held from 2th to 14th July 2007 at the Institut d’Etudes Scientifiques de Cargèse (http://www.iesc.univ-corse.fr/), in Corsica (France). This traditional place to organize Summer Schools and Workshops in a well equipped secluded location at the border of the Mediterranean sea has, over many years now, earned an increasing deserved reputation. Non-linear dynamics of non equilibrium systems has worked its way into a great number of fields and plays a key role in the understanding of se- organization and emergence phenomena in domains as diverse as chemical reactors, laser physics, fluid dynamics, electronic devices and biological morphogenesis. In the latter case, the viscoelastic properties of tissues are also known to play a key role. The control and formulation of soft responsive or “smart” materials has been a fast growing field of material science, specially in the area of po- mer networks, due to their growing applications in bio-science, chemical sensors, intelligent microfluidic devices, ... . Nature is an important p- vider of active materials whether at the level of tissues or at that of s- cellular structures. As a consequence, the fundamental understanding of the physical mechanisms at play in responsive materials also shines light in the understanding of biological artefacts.
An extraordinary mathematical conference was held 5-9 August 1990 at the University of California at Berkeley: From Topology to Computation: Unity and Diversity in the Mathematical Sciences An International Research Conference in Honor of Stephen Smale's 60th Birthday The topics of the conference were some of the fields in which Smale has worked: • Differential Topology • Mathematical Economics • Dynamical Systems • Theory of Computation • Nonlinear Functional Analysis • Physical and Biological Applications This book comprises the proceedings of that conference. The goal of the conference was to gather in a single meeting mathemati cians working in the many fields to which Smale has made lasting con tributions. The theme "Unity and Diversity" is enlarged upon in the section entitled "Research Themes and Conference Schedule." The organizers hoped that illuminating connections between seemingly separate mathematical sub jects would emerge from the conference. Since such connections are not easily made in formal mathematical papers, the conference included discussions after each of the historical reviews of Smale's work in different fields. In addition, there was a final panel discussion at the end of the conference.