Pattern Recognition in Chemistry

Pattern Recognition in Chemistry

Author: Kurt Varmuza

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 232

ISBN-13: 3642931553

DOWNLOAD EBOOK

Analytical chemistry of the recent years is strongly influenced by automation. Data acquisition from analytica~ instruments - and some times also controlling of instruments - by a computer are principally solved since many years. Availability of microcomputers made these tasks also feasible from the economic point of view. Besides these basic applications of computers in chemical measurements scientists developed computer programs for solving more sophisticated problems for which some kind of "intelligence" is usually supposed to be necessary. Harm less numerical experiments on this topic led to passionate discussions about the theme "which jobs cannot be done by a computer but only by human brain ?~. If this question is useful at all it should not be ans wered a priori. Application of computers in chemistry is a matter of utility, sometimes it is a social problem, but it is never a question of piety for the human brain. Automated instruments and the necessity to work on complex pro blems enhanced the development of automatic methods for the reduction and interpretation of large data sets. Numerous methods from mathematics, statistics, information theory, and computer science have been exten sively investigated for the elucidation of chemical information; a new discipline "chemometrics" has been established. Three different approaches have been used for computer-assisted interpretations of chemical data. 1. Heuristic methods try to formu late computer programs working in a similar way as a chemist would solve the problem. 2.


Chemometrics for Pattern Recognition

Chemometrics for Pattern Recognition

Author: Richard G. Brereton

Publisher: John Wiley & Sons

Published: 2009-09-28

Total Pages: 532

ISBN-13: 0470987251

DOWNLOAD EBOOK

Over the past decade, pattern recognition has been one of the fastest growth points in chemometrics. This has been catalysed by the increase in capabilities of automated instruments such as LCMS, GCMS, and NMR, to name a few, to obtain large quantities of data, and, in parallel, the significant growth in applications especially in biomedical analytical chemical measurements of extracts from humans and animals, together with the increased capabilities of desktop computing. The interpretation of such multivariate datasets has required the application and development of new chemometric techniques such as pattern recognition, the focus of this work. Included within the text are: ‘Real world’ pattern recognition case studies from a wide variety of sources including biology, medicine, materials, pharmaceuticals, food, forensics and environmental science; Discussions of methods, many of which are also common in biology, biological analytical chemistry and machine learning; Common tools such as Partial Least Squares and Principal Components Analysis, as well as those that are rarely used in chemometrics such as Self Organising Maps and Support Vector Machines; Representation in full colour; Validation of models and hypothesis testing, and the underlying motivation of the methods, including how to avoid some common pitfalls. Relevant to active chemometricians and analytical scientists in industry, academia and government establishments as well as those involved in applying statistics and computational pattern recognition.


Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling

Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling

Author: Jahan B. Ghasemi

Publisher: Elsevier

Published: 2022-10-20

Total Pages: 212

ISBN-13: 0323907067

DOWNLOAD EBOOK

Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling outlines key knowledge in this area, combining critical introductory approaches with the latest advanced techniques. Beginning with an introduction of univariate and multivariate statistical analysis, the book then explores multivariate calibration and validation methods. Soft modeling in chemical data analysis, hyperspectral data analysis, and autoencoder applications in analytical chemistry are then discussed, providing useful examples of the techniques in chemistry applications. Drawing on the knowledge of a global team of researchers, this book will be a helpful guide for chemists interested in developing their skills in multivariate data and error analysis. - Provides an introductory overview of statistical methods for the analysis and interpretation of chemical data - Discusses the use of machine learning for recognizing patterns in multidimensional chemical data - Identifies common sources of multivariate errors


Pattern Recognition

Pattern Recognition

Author: Sergios Theodoridis

Publisher: Elsevier

Published: 2003-05-15

Total Pages: 705

ISBN-13: 008051362X

DOWNLOAD EBOOK

Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest


Dissimilarity Representation For Pattern Recognition, The: Foundations And Applications

Dissimilarity Representation For Pattern Recognition, The: Foundations And Applications

Author: Robert P W Duin

Publisher: World Scientific

Published: 2005-11-22

Total Pages: 634

ISBN-13: 9814479144

DOWNLOAD EBOOK

This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition.Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and integrate by machine learning procedures. However, if the relations are captured by sets of dissimilarities, general data analysis procedures may be applied for analysis.With their detailed description of an unprecedented approach absent from traditional textbooks, the authors have crafted an essential book for every researcher and systems designer studying or developing pattern recognition systems.


Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Author: Chi Hau Chen

Publisher: World Scientific

Published: 1999-03-12

Total Pages: 1045

ISBN-13: 9814497649

DOWNLOAD EBOOK

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.


Pattern Recognition

Pattern Recognition

Author: Jürgen Beyerer

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-12-04

Total Pages: 330

ISBN-13: 3110537966

DOWNLOAD EBOOK

The book offers a thorough introduction to Pattern Recognition aimed at master and advanced bachelor students of engineering and the natural sciences. Besides classification - the heart of Pattern Recognition - special emphasis is put on features, their typology, their properties and their systematic construction. Additionally, general principles that govern Pattern Recognition are illustrated and explained in a comprehensible way. Rather than presenting a complete overview over the rapidly evolving field, the book is to clarifies the concepts so that the reader can easily understand the underlying ideas and the rationale behind the methods. For this purpose, the mathematical treatment of Pattern Recognition is pushed so far that the mechanisms of action become clear and visible, but not farther. Therefore, not all derivations are driven into the last mathematical detail, as a mathematician would expect it. Ideas of proofs are presented instead of complete proofs. From the authors’ point of view, this concept allows to teach the essential ideas of Pattern Recognition with sufficient depth within a relatively lean book. Mathematical methods explained thoroughly Extremely practical approach with many examples Based on over ten years lecture at Karlsruhe Institute of Technology For students but also for practitioners


Introduction to Statistical Pattern Recognition

Introduction to Statistical Pattern Recognition

Author: Keinosuke Fukunaga

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 606

ISBN-13: 0080478654

DOWNLOAD EBOOK

This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.


Chemometrics for Pattern Recognition

Chemometrics for Pattern Recognition

Author: Richard G. Brereton

Publisher: John Wiley & Sons

Published: 2009-06-29

Total Pages: 522

ISBN-13: 9780470746479

DOWNLOAD EBOOK

Over the past decade, pattern recognition has been one of the fastest growth points in chemometrics. This has been catalysed by the increase in capabilities of automated instruments such as LCMS, GCMS, and NMR, to name a few, to obtain large quantities of data, and, in parallel, the significant growth in applications especially in biomedical analytical chemical measurements of extracts from humans and animals, together with the increased capabilities of desktop computing. The interpretation of such multivariate datasets has required the application and development of new chemometric techniques such as pattern recognition, the focus of this work. Included within the text are: ‘Real world’ pattern recognition case studies from a wide variety of sources including biology, medicine, materials, pharmaceuticals, food, forensics and environmental science; Discussions of methods, many of which are also common in biology, biological analytical chemistry and machine learning; Common tools such as Partial Least Squares and Principal Components Analysis, as well as those that are rarely used in chemometrics such as Self Organising Maps and Support Vector Machines; Representation in full colour; Validation of models and hypothesis testing, and the underlying motivation of the methods, including how to avoid some common pitfalls. Relevant to active chemometricians and analytical scientists in industry, academia and government establishments as well as those involved in applying statistics and computational pattern recognition.