Pattern Discovery Using Sequence Data Mining

Pattern Discovery Using Sequence Data Mining

Author: Pradeep Kumar

Publisher:

Published: 2011-07-01

Total Pages: 272

ISBN-13: 9781613500583

DOWNLOAD EBOOK

"This book provides a comprehensive view of sequence mining techniques, and present current research and case studies in Pattern Discovery in Sequential data authored by researchers and practitioners"--


Pattern Recognition Algorithms for Data Mining

Pattern Recognition Algorithms for Data Mining

Author: Sankar K. Pal

Publisher: CRC Press

Published: 2004-05-27

Total Pages: 275

ISBN-13: 1135436401

DOWNLOAD EBOOK

Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.


The Pattern Future

The Pattern Future

Author: Mark R. Anderson

Publisher: FiReBooks

Published: 2017-11-20

Total Pages: 240

ISBN-13: 9780996725446

DOWNLOAD EBOOK

Renowned technology and economics forecaster Mark Anderson reveals hidden patterns beneath the art and science of predicting the future. Through a series of personal vignettes, Anderson exposes a complex web of causes, influences, and effects that propel today's world, then describes strategies that he employs to lay bare new trends, to make new discoveries in a wide variety of disciplines, and to accurately foresee future events.


Data Mining and Knowledge Discovery for Process Monitoring and Control

Data Mining and Knowledge Discovery for Process Monitoring and Control

Author: Xue Z. Wang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 263

ISBN-13: 1447104218

DOWNLOAD EBOOK

Modern computer-based control systems are able to collect a large amount of information, display it to operators and store it in databases but the interpretation of the data and the subsequent decision making relies mainly on operators with little computer support. This book introduces developments in automatic analysis and interpretation of process-operational data both in real-time and over the operational history, and describes new concepts and methodologies for developing intelligent, state space-based systems for process monitoring, control and diagnosis. The book brings together new methods and algorithms from process monitoring and control, data mining and knowledge discovery, artificial intelligence, pattern recognition, and causal relationship discovery, as well as signal processing. It also provides a framework for integrating plant operators and supervisors into the design of process monitoring and control systems.


Data Mining

Data Mining

Author: Krzysztof J. Cios

Publisher: Springer Science & Business Media

Published: 2007-10-05

Total Pages: 601

ISBN-13: 0387367950

DOWNLOAD EBOOK

This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.


Temporal Data Mining

Temporal Data Mining

Author: Theophano Mitsa

Publisher: CRC Press

Published: 2010-03-10

Total Pages: 398

ISBN-13: 1420089773

DOWNLOAD EBOOK

From basic data mining concepts to state-of-the-art advances, this book covers the theory of the subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references.


Advances in Genomic Sequence Analysis and Pattern Discovery

Advances in Genomic Sequence Analysis and Pattern Discovery

Author: Laura Elnitski

Publisher: World Scientific

Published: 2011

Total Pages: 236

ISBN-13: 9814327727

DOWNLOAD EBOOK

Mapping the genomic landscapes is one of the most exciting frontiers of science. We have the opportunity to reverse engineer the blueprints and the control systems of living organisms. Computational tools are key enablers in the deciphering process. This book provides an in-depth presentation of some of the important computational biology approaches to genomic sequence analysis. The first section of the book discusses methods for discovering patterns in DNA and RNA. This is followed by the second section that reflects on methods in various ways, including performance, usage and paradigms.


Information Visualization in Data Mining and Knowledge Discovery

Information Visualization in Data Mining and Knowledge Discovery

Author: Usama M. Fayyad

Publisher: Morgan Kaufmann

Published: 2002

Total Pages: 446

ISBN-13: 9781558606890

DOWNLOAD EBOOK

This text surveys research from the fields of data mining and information visualisation and presents a case for techniques by which information visualisation can be used to uncover real knowledge hidden away in large databases.


Knowledge Discovery with Support Vector Machines

Knowledge Discovery with Support Vector Machines

Author: Lutz H. Hamel

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 211

ISBN-13: 1118211030

DOWNLOAD EBOOK

An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.