Partial Differential Equations with Variable Exponents

Partial Differential Equations with Variable Exponents

Author: Vicentiu D. Radulescu

Publisher: CRC Press

Published: 2015-06-24

Total Pages: 321

ISBN-13: 1498703445

DOWNLOAD EBOOK

Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational


Lebesgue and Sobolev Spaces with Variable Exponents

Lebesgue and Sobolev Spaces with Variable Exponents

Author: Lars Diening

Publisher: Springer

Published: 2011-03-29

Total Pages: 516

ISBN-13: 3642183638

DOWNLOAD EBOOK

The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.


Handbook of Differential Equations: Stationary Partial Differential Equations

Handbook of Differential Equations: Stationary Partial Differential Equations

Author: Michel Chipot

Publisher: Elsevier

Published: 2006-08-08

Total Pages: 631

ISBN-13: 0080463827

DOWNLOAD EBOOK

This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics.Key features: - Written by well-known experts in the field- Self-contained volume in series covering one of the most rapid developing topics in mathematics- Written by well-known experts in the field- Self-contained volume in series covering one of the most rapid developing topics in mathematics


Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents

Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents

Author: Alex Kaltenbach

Publisher: Springer Nature

Published: 2023-09-12

Total Pages: 364

ISBN-13: 3031296702

DOWNLOAD EBOOK

This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier–Stokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of Bochner–Lebesgue spaces is not applicable. As a substitute for Bochner–Lebesgue spaces, variable Bochner–Lebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-Navier–Stokes equations under general assumptions. Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory and non-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the functional analytic prerequisites, will ease newcomers into the subject.


Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces

Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces

Author: Iwona Chlebicka

Publisher: Springer Nature

Published: 2021-11-01

Total Pages: 389

ISBN-13: 3030888568

DOWNLOAD EBOOK

This book provides a detailed study of nonlinear partial differential equations satisfying certain nonstandard growth conditions which simultaneously extend polynomial, inhomogeneous and fully anisotropic growth. The common property of the many different kinds of equations considered is that the growth conditions of the highest order operators lead to a formulation of the equations in Musielak–Orlicz spaces. This high level of generality, understood as full anisotropy and inhomogeneity, requires new proof concepts and a generalization of the formalism, calling for an extended functional analytic framework. This theory is established in the first part of the book, which serves as an introduction to the subject, but is also an important ingredient of the whole story. The second part uses these theoretical tools for various types of PDEs, including abstract and parabolic equations but also PDEs arising from fluid and solid mechanics. For connoisseurs, there is a short chapter on homogenization of elliptic PDEs. The book will be of interest to researchers working in PDEs and in functional analysis.


Analysis, Partial Differential Equations and Applications

Analysis, Partial Differential Equations and Applications

Author: Alberto Cialdea

Publisher: Springer Science & Business Media

Published: 2010-01-14

Total Pages: 342

ISBN-13: 3764398981

DOWNLOAD EBOOK

This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications", held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrödinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya.


Nonlinear Elliptic Partial Differential Equations

Nonlinear Elliptic Partial Differential Equations

Author: J. P. Gossez

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 278

ISBN-13: 0821849077

DOWNLOAD EBOOK

This volume contains papers on semi-linear and quasi-linear elliptic equations from the workshop on Nonlinear Elliptic Partial Differential Equations, in honor of Jean-Pierre Gossez's 65th birthday, held September 2-4, 2009 at the Universite Libre de Bruxelles, Belgium. The workshop reflected Gossez's contributions in nonlinear elliptic PDEs and provided an opening to new directions in this very active research area. Presentations covered recent progress in Gossez's favorite topics, namely various problems related to the $p$-Laplacian operator, the antimaximum principle, the Fucik Spectrum, and other related subjects. This volume will be of principle interest to researchers in nonlinear analysis, especially in partial differential equations of elliptic type.


Lebesgue and Sobolev Spaces with Variable Exponents

Lebesgue and Sobolev Spaces with Variable Exponents

Author: Lars Diening

Publisher: Springer Science & Business Media

Published: 2011-03-31

Total Pages: 516

ISBN-13: 364218362X

DOWNLOAD EBOOK

The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.


Evolution PDEs with Nonstandard Growth Conditions

Evolution PDEs with Nonstandard Growth Conditions

Author: Stanislav Antontsev

Publisher: Springer

Published: 2015-04-01

Total Pages: 417

ISBN-13: 9462391122

DOWNLOAD EBOOK

This monograph offers the reader a treatment of the theory of evolution PDEs with nonstandard growth conditions. This class includes parabolic and hyperbolic equations with variable or anisotropic nonlinear structure. We develop methods for the study of such equations and present a detailed account of recent results. An overview of other approaches to the study of PDEs of this kind is provided. The presentation is focused on the issues of existence and uniqueness of solutions in appropriate function spaces and on the study of the specific qualitative properties of solutions, such as localization in space and time, extinction in a finite time and blow-up, or nonexistence of global in time solutions. Special attention is paid to the study of the properties intrinsic to solutions of equations with nonstandard growth.


Potentials and Partial Differential Equations

Potentials and Partial Differential Equations

Author: Suzanne Lenhart

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2023-05-22

Total Pages: 365

ISBN-13: 3110792788

DOWNLOAD EBOOK

This volume is dedicated to the legacy of David R. Adams (1941-2021) and discusses calculus of variations, functional - harmonic - potential analysis, partial differential equations, and their applications in modeling, mathematical physics, and differential - integral geometry.