This report presents a cost analysis of para-Xylene production from toluene. The process examined is a toluene disproportionation process similar to ExxonMobil PxMax. This report was developed based essentially on the following reference(s): Keywords: Mixed Xylenes, C8 Aromatics, PxMax, ExxonMobil
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors
This book covers both basic scientific and clinically relevant aspects of dental composite materials with a view to meeting the needs of researchers and practitioners. Following an introduction on their development, the composition of contemporary composites is analyzed. A chapter on polymerization explains the setting reactions and light sources available for light-cured composites. The quality of monomer-to-polymer conversion is a key factor for material properties. Polymerization shrinkage along with the associated stress remains among the most challenging issues regarding composite restorations. A new classification of dental composites is proposed to offer more clinically relevant ways of differentiating between commercially available materials. A review of specific types of composites provides an insight into their key issues. The potential biological issues of dental composites are reviewed in chapters on elution of leachable substances and cariogenicity of resin monomers. Clinical sections focus on material placement, finishing procedures, and the esthetics and clinical longevity of composite restorations. Bonding to tooth tissues is addressed in a separate chapter, as is the efficiency of various composite repair methods. The final chapter discusses future perspectives on dental composite materials.
This resource covers all areas of interest for the practicing engineer as well as for the student at various levels and educational institutions. It features the work of authors from all over the world who have contributed their expertise and support the globally working engineer in finding a solution for today‘s mechanical engineering problems. Each subject is discussed in detail and supported by numerous figures and tables.
UV-VIS spectroscopy is one of the oldest methods in molecular spectroscopy. The definitive formulation of the Bouguer-Lambert Beer law in 1852 created the basis for the quantitative evaluation of absorption measurements at an early date. This led firstly to colorimetry, then to photometry and finally to spectrophotometry. This evolution ran parallel with the development of detectors for measuring light intensities, i.e. from the human eye via the photo element and photocell, to the photomultiplier and from the photo graphic plate to the present silicon-diode detector both of which allow simultaneous measurement of the complete spectrum. With the development of quantum chemistry, increasing atten tion was paid to the correlation between light absorption and the structure of matter with the result that in recent decades a number of excellent discussions of the theory of electronic spectroscopy (UV-VIS and luminescence sp,~ctroscopy) have been published. Consequently, this extremely ivteresting aspect of molecular spec troscopy has dominated the teaching of the subject both in my own lectures and those of others. However, it is often overlooked that, in addition to the theory, applications of spectroscopic methods are of particular interest to scientists. For this reason, a lecture series about electronic spectroscopy given in the Institute for Physical Chemistry at the Heinrich-Heine-University in Dusseldorf was supplemented by one about "UV-VIS spectroscopy and its applications". This formed the basis of the present book.
Intensive research on zeolites, during the past thirty years, has resulted in a deep understanding of their chemistry and in a true zeolite science, including synthesis, structure, chemical and physical properties, and catalysis. These studies are the basis for the development and growth of several industrial processes applying zeolites for selective sorption, separation, and catalysis. In 1983, a NATO Advanced Study Institute was organized in Alcabideche (portugal) to establish the State-of-the-Art in Zeolite Science and Technology and to contribute to a better understanding of the structural properties of zeolites, the configurational constraints they may exert, and their effects in adsorption, diffusion, and catalysis. Since then, zeolite science has witnessed an almost exponential growth in published papers and patents, dealing with both fundamentals issues and original applications. The proposal of new procedures for zeolite synthesis, the development of novel and sophisticated physical techniques for zeolite characterization, the discovery of new zeolitic and related microporous materials, progresses in quantum chemistry and molecular modeling of zeolites, and the application of zeolites as catalysts for organic reactions have prompted increasing interest among the scientific community. An important and harmonious interaction between various domains of Physics, Chemistry, and Engineering resulted therefrom.
The reconciliation of economic development, social justice and reduction of greenhouse gas emissions is one of the biggest political challenges of the moment. Strategies for mitigating CO2 emissions on a large scale using sequestration, storage and carbon technologies are priorities on the agendas of research centres and governments. Research on carbon sequestration is the path to solving major sustainability problems of this century a complex issue that requires a scientific approach and multidisciplinary and interdisciplinary technology, plus a collaborative policy among nations. Thus, this challenge makes this book an important source of information for researchers, policymakers and anyone with an inquiring mind on this subject.
"The fourth edition of Elements of Chemical Reaction Engineering is a completely revised version of the book. It combines authoritative coverage of the principles of chemical reaction engineering with an unsurpassed focus on critical thinking and creative problem solving, employing open-ended questions and stressing the Socratic method. Clear and organized, it integrates text, visuals, and computer simulations to help readers solve even the most challenging problems through reasoning, rather than by memorizing equations."--BOOK JACKET.
The history of environmental protection has dealt with hazardous substances by cleaning them up or treating them after the substances have formed. Green Chemistry, however, designs products and processes so that no hazardous materials are used or made in the first place. With applications fromplastic to paints, from automobiles to pharmaceuticals, Green Chemistry is revolutionising science and industry and its impact on the environment.
Many books have now been published in the broad field of environmental toxicology. However, to date, none of have presented the often fascinating stories of the wildlife science, and the steps along the way from discovery of problems caused by environmental pollutants to the regulatory and non-regulatory efforts to address the problems. This book provides case by case examinations of how toxic chemical effects on wildlife have brought about policy and regulatory decisions, and positive changes in environmental conditions. Wild animal stories, whether they are about the disappearance of charismatic top predators, or of grossly deformed embryos or frogs, provide powerful symbols that can and have captured the public's imagination and have resulted in increased awareness by decision makers. It is the intent of this book to present factual and balanced overviews and summaries of the science and the subsequent regulatory processes that followed to effect change (or not). We cover a variety of chemicals and topics beginning with an update of the classic California coastal DDT story of eggshell thinning and avian reproduction to more recent cases, such as the veterinarian pharmaceutical that has brought three species of Asian vultures to the brink of extinction. Researchers, regulators, educators, NGOs and the general public will find valuable insights into the processes and mechanisms involved both in environmental scientific investigation and in efforts to effect positive change.