Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models

Author: Jaya P. N. Bishwal

Publisher: Springer Nature

Published: 2022-08-06

Total Pages: 634

ISBN-13: 3031038614

DOWNLOAD EBOOK

This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.


Inference in Hidden Markov Models

Inference in Hidden Markov Models

Author: Olivier Cappé

Publisher: Springer Science & Business Media

Published: 2006-04-12

Total Pages: 656

ISBN-13: 0387289828

DOWNLOAD EBOOK

This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.


Stochastic Volatility and Realized Stochastic Volatility Models

Stochastic Volatility and Realized Stochastic Volatility Models

Author: Makoto Takahashi

Publisher: Springer Nature

Published: 2023-04-18

Total Pages: 120

ISBN-13: 981990935X

DOWNLOAD EBOOK

This treatise delves into the latest advancements in stochastic volatility models, highlighting the utilization of Markov chain Monte Carlo simulations for estimating model parameters and forecasting the volatility and quantiles of financial asset returns. The modeling of financial time series volatility constitutes a crucial aspect of finance, as it plays a vital role in predicting return distributions and managing risks. Among the various econometric models available, the stochastic volatility model has been a popular choice, particularly in comparison to other models, such as GARCH models, as it has demonstrated superior performance in previous empirical studies in terms of fit, forecasting volatility, and evaluating tail risk measures such as Value-at-Risk and Expected Shortfall. The book also explores an extension of the basic stochastic volatility model, incorporating a skewed return error distribution and a realized volatility measurement equation. The concept of realized volatility, a newly established estimator of volatility using intraday returns data, is introduced, and a comprehensive description of the resulting realized stochastic volatility model is provided. The text contains a thorough explanation of several efficient sampling algorithms for latent log volatilities, as well as an illustration of parameter estimation and volatility prediction through empirical studies utilizing various asset return data, including the yen/US dollar exchange rate, the Dow Jones Industrial Average, and the Nikkei 225 stock index. This publication is highly recommended for readers with an interest in the latest developments in stochastic volatility models and realized stochastic volatility models, particularly in regards to financial risk management.


Parameter Estimation in Stochastic Volatility Models Via Approximate Bayesian Computing

Parameter Estimation in Stochastic Volatility Models Via Approximate Bayesian Computing

Author: Achal Awasthi

Publisher:

Published: 2018

Total Pages: 150

ISBN-13:

DOWNLOAD EBOOK

In this thesis, we propose a generalized Heston model as a tool to estimate volatility. We have used Approximate Bayesian Computing to estimate the parameters of the generalized Heston model. This model was used to examine the daily closing prices of the Shanghai Stock Exchange and the NIKKEI 225 indices. We found that this model was a good fit for shorter time periods around financial crisis. For longer time periods, this model failed to capture the volatility in detail.


Modeling Stochastic Volatility with Application to Stock Returns

Modeling Stochastic Volatility with Application to Stock Returns

Author: Mr.Noureddine Krichene

Publisher: International Monetary Fund

Published: 2003-06-01

Total Pages: 30

ISBN-13: 1451854846

DOWNLOAD EBOOK

A stochastic volatility model where volatility was driven solely by a latent variable called news was estimated for three stock indices. A Markov chain Monte Carlo algorithm was used for estimating Bayesian parameters and filtering volatilities. Volatility persistence being close to one was consistent with both volatility clustering and mean reversion. Filtering showed highly volatile markets, reflecting frequent pertinent news. Diagnostics showed no model failure, although specification improvements were always possible. The model corroborated stylized findings in volatility modeling and has potential value for market participants in asset pricing and risk management, as well as for policymakers in the design of macroeconomic policies conducive to less volatile financial markets.


Hidden Markov Models for Time Series

Hidden Markov Models for Time Series

Author: Walter Zucchini

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 370

ISBN-13: 1482253844

DOWNLOAD EBOOK

Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data


Bayesian Analysis of Moving Average Stochastic Volatility Models

Bayesian Analysis of Moving Average Stochastic Volatility Models

Author: Stefanos Dimitrakopoulos

Publisher:

Published: 2017

Total Pages: 28

ISBN-13:

DOWNLOAD EBOOK

We propose a moving average stochastic volatility in mean model and a moving average stochastic volatility model with leverage. For parameter estimation, we develop efficient Markov chain Monte Carlo algorithms and illustrate our methods, using simulated data and a real data set. We compare the proposed specifications against several competing stochastic volatility models, using marginal likelihoods and the observed-data Deviance information criterion. We find that the moving average stochastic volatility model with leverage has better fit to our daily return series than various standard benchmarks.