Population Parameters

Population Parameters

Author: Hamish McCallum

Publisher: John Wiley & Sons

Published: 2008-04-15

Total Pages: 360

ISBN-13: 0470757426

DOWNLOAD EBOOK

Ecologists and environmental managers rely on mathematical models, both to understand ecological systems and to predict future system behavior. In turn, models rely on appropriate estimates of their parameters. This book brings together a diverse and scattered literature, to provide clear guidance on how to estimate parameters for models of animal populations. It is not a recipe book of statistical procedures. Instead, it concentrates on how to select the best approach to parameter estimation for a particular problem, and how to ensure that the quality estimated is the appropriate one for the specific purpose of the modelling exercise. Commencing with a toolbox of useful generic approaches to parameter estimation, the book deals with methods for estimating parameters for single populations. These parameters include population size, birth and death rates, and the population growth rate. For such parameters, rigorous statistical theory has been developed, and software is readily available. The problem is to select the optimal sampling design and method of analysis. The second part of the book deals with parameters that describe spatial dynamics, and ecological interactions such as competition, predation and parasitism. Here the principle problems are designing appropriate experiments and ensuring that the quantities measured by the experiments are relevant to the ecological models in which they will be used. This book will be essential reading for ecological researchers, postgraduate students and environmental managers who need to address an ecological problem through a population model. It is accessible to anyone with an understanding of basic statistical methods and population ecology. Unique in concentrating on parameter estimation within modelling. Fills a glaring gap in the literature. Not too technical, so suitable for the statistically inept. Methods explained in algebra, but also in worked examples using commonly available computer packages (SAS, GLIM, and some more specialised packages where relvant). Some spreadsheet based examples also included.


Parameter Estimation in Ecology

Parameter Estimation in Ecology

Author: Otto Richter

Publisher: Wiley-Blackwell

Published: 1990-02-28

Total Pages: 218

ISBN-13: 9783527279548

DOWNLOAD EBOOK

This book is unique in that it combines ecological model building and the application of advanced statistical methods for parameter estimation. Written for model builders and statisticians in the field of ecology, it provides the statistical and numerical tools needed to estimate parameters from experimental data. These tools range from standard methods to highly advanced ones for parameter identification using ordinary differential equations. Detailed examples based on real data illustrate their use. It provides the necessary link between data and models, between simulation and statistics.


Capture-Recapture: Parameter Estimation for Open Animal Populations

Capture-Recapture: Parameter Estimation for Open Animal Populations

Author: George A. F. Seber

Publisher: Springer

Published: 2019-08-13

Total Pages: 663

ISBN-13: 3030181871

DOWNLOAD EBOOK

This comprehensive book, rich with applications, offers a quantitative framework for the analysis of the various capture-recapture models for open animal populations, while also addressing associated computational methods. The state of our wildlife populations provides a litmus test for the state of our environment, especially in light of global warming and the increasing pollution of our land, seas, and air. In addition to monitoring our food resources such as fisheries, we need to protect endangered species from the effects of human activities (e.g. rhinos, whales, or encroachments on the habitat of orangutans). Pests must be be controlled, whether insects or viruses, and we need to cope with growing feral populations such as opossums, rabbits, and pigs. Accordingly, we need to obtain information about a given population’s dynamics, concerning e.g. mortality, birth, growth, breeding, sex, and migration, and determine whether the respective population is increasing , static, or declining. There are many methods for obtaining population information, but the most useful (and most work-intensive) is generically known as “capture-recapture,” where we mark or tag a representative sample of individuals from the population and follow that sample over time using recaptures, resightings, or dead recoveries. Marks can be natural, such as stripes, fin profiles, and even DNA; or artificial, such as spots on insects. Attached tags can, for example, be simple bands or streamers, or more sophisticated variants such as radio and sonic transmitters. To estimate population parameters, sophisticated and complex mathematical models have been devised on the basis of recapture information and computer packages. This book addresses the analysis of such models. It is primarily intended for ecologists and wildlife managers who wish to apply the methods to the types of problems discussed above, though it will also benefit researchers and graduate students in ecology. Familiarity with basic statistical concepts is essential.


Parameter Estimation for Animal Populations

Parameter Estimation for Animal Populations

Author: Larkin Powell

Publisher: Lulu.com

Published: 2015

Total Pages: 258

ISBN-13: 1329061519

DOWNLOAD EBOOK

This book is a simple introduction to the logic behind analyses and sampling design for mark-recapture and survey efforts. With a focus on the early user and beginner, the book explains the complicated formulas and statistics that can be effectively used around the world in support of conservation efforts.


Capture-recapture

Capture-recapture

Author: George Arthur Frederick Seber

Publisher:

Published: 2019

Total Pages: 663

ISBN-13: 9783030181888

DOWNLOAD EBOOK

This comprehensive book, rich with applications, offers a quantitative framework for the analysis of the various capture-recapture models for open animal populations, while also addressing associated computational methods. The state of our wildlife populations provides a litmus test for the state of our environment, especially in light of global warming and the increasing pollution of our land, seas, and air. In addition to monitoring our food resources such as fisheries, we need to protect endangered species from the effects of human activities (e.g. rhinos, whales, or encroachments on the habitat of orangutans). Pests must be be controlled, whether insects or viruses, and we need to cope with growing feral populations such as opossums, rabbits, and pigs. Accordingly, we need to obtain information about a given population's dynamics, concerning e.g. mortality, birth, growth, breeding, sex, and migration, and determine whether the respective population is increasing , static, or declining. There are many methods for obtaining population information, but the most useful (and most work-intensive) is generically known as "capture-recapture," where we mark or tag a representative sample of individuals from the population and follow that sample over time using recaptures, resightings, or dead recoveries. Marks can be natural, such as stripes, fin profiles, and even DNA; or artificial, such as spots on insects. Attached tags can, for example, be simple bands or streamers, or more sophisticated variants such as radio and sonic transmitters. To estimate population parameters, sophisticated and complex mathematical models have been devised on the basis of recapture information and computer packages. This book addresses the analysis of such models. It is primarily intended for ecologists and wildlife managers who wish to apply the methods to the types of problems discussed above, though it will also benefit researchers and graduate students in ecology. Familiarity with basic statistical concepts is essential.


Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology

Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology

Author: Johannes Gottlieb

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 307

ISBN-13: 940091704X

DOWNLOAD EBOOK

The Workshop on Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology, Karlsruhe, April 10-12, 1995, was organized to bring to gether an interdisciplinary group drawn from the areas of science, engineering and mathematics for the following purposes: - to promote, encourage and influence more understanding and cooperation in the community of parameter identifiers from various disciplines, - to forge unity in diversity by bringing together a variety of disciplines that attempt to understand the reconstruction of inner model parameters, un known nonlinear constitutive relations, heterogeneous structures inside of geological objects, sources or sinks from observational data, - to discuss modern regularization tools for handling improperly posed pro blems and strategies of incorporating a priori knowledge from the applied problem into the model and its treatment. These proceedings contain some of the results of the workshop, representing a bal anced selection of contributions from the various groups of participants. The reviewed invited and contributed articles are grouped according to the broad headings of hydrology, non-linear diffusion and soil physics, geophysical methods, mathematical analysis of inverse and ill-posed problems and parallel algorithms for inverse problems. Some of the issues adressed by the articles in these proceedings include the rela tion between least squares and direct formulations of inverse problems for partial differential equations, nonlinear regularization, identification of nonlinear consti tutive relations, fast parallel algorithms for large scale inverse problems, reduction of model structures, geostatistical inversion techniques.


Environmental and Ecological Statistics with R

Environmental and Ecological Statistics with R

Author: Song S. Qian

Publisher: CRC Press

Published: 2016-11-03

Total Pages: 560

ISBN-13: 1498728731

DOWNLOAD EBOOK

Emphasizing the inductive nature of statistical thinking, Environmental and Ecological Statistics with R, Second Edition, connects applied statistics to the environmental and ecological fields. Using examples from published works in the ecological and environmental literature, the book explains the approach to solving a statistical problem, covering model specification, parameter estimation, and model evaluation. It includes many examples to illustrate the statistical methods and presents R code for their implementation. The emphasis is on model interpretation and assessment, and using several core examples throughout the book, the author illustrates the iterative nature of statistical inference. The book starts with a description of commonly used statistical assumptions and exploratory data analysis tools for the verification of these assumptions. It then focuses on the process of building suitable statistical models, including linear and nonlinear models, classification and regression trees, generalized linear models, and multilevel models. It also discusses the use of simulation for model checking, and provides tools for a critical assessment of the developed models. The second edition also includes a complete critique of a threshold model. Environmental and Ecological Statistics with R, Second Edition focuses on statistical modeling and data analysis for environmental and ecological problems. By guiding readers through the process of scientific problem solving and statistical model development, it eases the transition from scientific hypothesis to statistical model.


Estimating Animal Abundance

Estimating Animal Abundance

Author: D.L. Borchers

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 321

ISBN-13: 1447137086

DOWNLOAD EBOOK

The first accessible introduction to the many various wildlife assessment methods! This book uses a new approach that makes the full range of methods accessible in a way that has not previously been possible. Accompanied by free, user-friendly software to get some "hands-on" experience with the methods and how they perform in different contexts.