Parameter Estimation and Auto-calibration of the STREAM-C Model

Parameter Estimation and Auto-calibration of the STREAM-C Model

Author: Sumit Sinha

Publisher:

Published: 2005

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The STREAM-C model is based on the same algorithm as implemented by the Steady Riverine Environmental Assessment Model (STREAM), a mathematical model for the dissolved oxygen (DO) distribution in freshwater streams used by Mississippi Department of Environmental Quality (MDEQ). Typically the water quality models are calibrated manually. In some cases where some objective criterion can be identified to quantify a successful calibration, an auto calibration may be preferable to the manual calibration approach. The auto calibration may be particularly applicable to relatively simple analytical models such as the steady-state STREAM-C model. Various techniques of parameter estimation were identified for the model. The model was then subjected to various techniques of parameter estimation identified and/or developed. The parameter estimates obtained by different techniques were tabulated and compared. A final recommendation regarding a preferable parameter estimation technique leading to auto calibration of the STREAM-C model was made.


PARAMETER ESTIMATION AND AUTO-CALIBRATION FOR THE STREAM-C MODEL.

PARAMETER ESTIMATION AND AUTO-CALIBRATION FOR THE STREAM-C MODEL.

Author:

Publisher:

Published: 2004

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The STREAMC model is based on the same algorithm as implemented by the Steady Riverine Environmental Assessment Model (STREAM), a mathematical model for the dissolved oxygen (DO) distribution in freshwater streams used by Mississippi Department of Environmental Quality (MDEQ). Typically the water quality models are calibrated manually. In some cases where some objective criterion can be identified to quantify a successful calibration, an auto calibration may be preferable to the manual calibration approach. The auto calibration may be particularly applicable to relatively simple analytical models such as the steady-state STREAMC model. Various techniques of parameter estimation were identified for the model. The model was then subjected to various techniques of parameter estimation identified and/or developed. The parameter estimates obtained by different techniques were tabulated and compared. A final recommendation regarding a preferable parameter estimation technique leading to the auto calibration of the STREAMC model was made.


Water Management and Water Governance

Water Management and Water Governance

Author: Ashish Pandey

Publisher: Springer Nature

Published: 2020-11-11

Total Pages: 546

ISBN-13: 3030580512

DOWNLOAD EBOOK

This book focusses on hydrological modeling, water management, and water governance. It covers the applications of remote sensing and GIS tools and techniques for land use and land cover classifications, estimation of precipitation, evaluation of morphological changes, and monitoring of soil moisture variability. Moreover, remote sensing and GIS techniques have been applied for crop mapping to assess cropping patterns, computation of reference crop evapotranspiration, and crop coefficient. Hydrological modeling studies have been carried out to address various issues in the water sector. MODFLOW model was successfully applied for groundwater modeling and groundwater recharge estimation. Runoff modeling has been carried out to simulate the snowmelt runoff together with the rainfall and sub-surface flow contributions for snow-fed basins. A study has been included, which predicts the impact of the land use and land cover on stream flow. Various problems in the water sector have been addressed employing hydrological models such as SWAT, ArcSWAT, and VIC. An experimental study has been presented wherein the laboratory performance of rainfall simulator has been evaluated. Hydrological modeling studies involving modifications in the curve number methodology for simulation of floods and sediment load have also been presented. This book is useful for academicians, water practitioners, scientists, water managers, environmentalists, and administrators, NGOs, researchers, and students who are involved in water management with the focus on hydrological modeling, water management, and water governance.


Calibration of Watershed Models

Calibration of Watershed Models

Author: Qingyun Duan

Publisher: John Wiley & Sons

Published: 2003-01-10

Total Pages: 356

ISBN-13: 087590355X

DOWNLOAD EBOOK

Published by the American Geophysical Union as part of the Water Science and Application Series, Volume 6. During the past four decades, computer-based mathematical models of watershed hydrology have been widely used for a variety of applications including hydrologic forecasting, hydrologic design, and water resources management. These models are based on general mathematical descriptions of the watershed processes that transform natural forcing (e.g., rainfall over the landscape) into response (e.g., runoff in the rivers). The user of a watershed hydrology model must specify the model parameters before the model is able to properly simulate the watershed behavior.


River Water Quality Model

River Water Quality Model

Author: P. Reichert

Publisher: IWA Publishing

Published: 2001-08-31

Total Pages: 150

ISBN-13: 9781900222822

DOWNLOAD EBOOK

This Scientific and Technical Report (STR) presents the findings of the IWA Task Group on River Water Quality Modelling (RWQM). The task group was formed to create a scientific and technical base from which to formulate standardized, consistent river water quality models and guidelines for their implementation. This STR presents the first outcome in this effort: River Water Quality Model No. 1 (RWQM1). As background to the development of River Water Quality Model No.1, the Task Group completed a critical evaluation of the current state of the practice in water quality modelling. A major limitation in model formulation is the continued reliance on BOD as the primary state variable, despite the fact BOD does not include all biodegradable matter. A related difficulty is the poor representation of benthic flux terms. As a result of these limitations, it is impossible to close mass balances completely in most existing models. These various limitations in current river water quality models impair their predictive ability in situations of marked changes in a river's pollutant load, streamflow, morphometry, or other basic characteristics. RWQM 1 is intended to serve as a framework for river water quality models that overcome these deficiencies in traditional water quality models and most particularly the failure to close mass balances between the water column and sediment. To these ends, the model incorporates fundamental water quality components and processes to characterise carbon, oxygen, nitrogen, and phosphorus (C, O, N, and P) cycling instead of biochemical oxygen demand as used in traditional models. The model is presented in terms of process and components represented via a 'Petersen stoichiometry matrix', the same approach used for the IWA Activated Sludge Models. The full RWQM1 includes 24 components and 30 processes. The report provides detailed examples on reducing the numbers of components and processes to fit specific water quality problems. Thus, the model provides a framework for both complicated and simplified models. Detailed explanations of the model components, process equations, stoichiometric parameters, and kinetic parameters are provided, as are example parameter values and two case studies. The STR is intended to launch a participatory process of model development, application, and refinement. RWQM1 provides a framework for this process, but the goal of the Task Group is to involve water quality professionals worldwide in the continued work developing a new water quality modelling approach. This text will be an invaluable reference for researchers and graduate students specializing in water resources, hydrology, water quality, or environmental modelling in departments of environmental engineering, natural resources, civil engineering, chemical engineering, environmental sciences, and ecology. Water resources engineers, water quality engineers and technical specialists in environmental consultancy, government agencies or regulated industries will also value this critical assessment of the state of practice in water quality modelling. Key Features presents a unique new technical approach to river water quality modelling provides a detailed technical presentation of the RWQM1 water quality process model gives an informative critical evaluation of the state of the practice in water quality modelling, and problems with those practices provides a step by step procedure to develop a water quality model Scientific & Technical Report No. 12


Discrete Choice Methods with Simulation

Discrete Choice Methods with Simulation

Author: Kenneth Train

Publisher: Cambridge University Press

Published: 2009-07-06

Total Pages: 399

ISBN-13: 0521766559

DOWNLOAD EBOOK

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.


Water Encyclopedia, Oceanography; Meteorology; Physics and Chemistry; Water Law; and Water History, Art, and Culture

Water Encyclopedia, Oceanography; Meteorology; Physics and Chemistry; Water Law; and Water History, Art, and Culture

Author: Jay H. Lehr

Publisher: Wiley-Interscience

Published: 2005-06

Total Pages: 856

ISBN-13:

DOWNLOAD EBOOK

Volume 1 outlines water supply infrastructure. The requirements for supplying water to a home, a city or a factory can be very different. Experts in these fields explain the nuances of the details involved in maintaining adequate quantity and quality for these different consumers. Waste water management can be of even greater concern, yet its management can follow similar paths when compared to sophisticated water supply treatment. Both the physics and chemistry of these fields are fully covered. Volume 2 deals with the big picture of regional water supplies, how they become contaminated, how they can be protected and how they can best serve the surrounding populations and industries. Significant focus is placed upon the natural chemistry of available water supplies and its biological impacts. Case studies from regions around the world offer an excellent picture of the world's water resources.