Paramagnetism

Paramagnetism

Author: Philip S. Callahan

Publisher: Acres U.S.A., Incorporated

Published: 1995

Total Pages: 146

ISBN-13:

DOWNLOAD EBOOK

Ancient peoples understood the growth and healing powers of rocks-now Dr. Callahan has rediscovered that force.


Paramagnetism in Experimental Biomolecular NMR

Paramagnetism in Experimental Biomolecular NMR

Author: Claudio Luchinat

Publisher: Royal Society of Chemistry

Published: 2018-08-03

Total Pages: 340

ISBN-13: 1788014960

DOWNLOAD EBOOK

Paramagnetic NMR is a growing technique that represents an increasingly important tool for the investigation of biomolecules. This book presents an update and overview of the paramagnetic NMR phenomena and effects as well as guidelines for practical implementation of state-of-the-art experiments. All experiments are supported by a solid theoretical foundation. Areas mentioned are the development of solid state NMR, the use of paramagnetic tags providing information on the structure and mobility of the investigated systems, and dynamic nuclear polarization to increase sensitivity. Compiled by experts in the field, this book has international appeal for researchers as well as students interested in magnetic resonance and structural biology who require experimental support and accessible information.


Magnetic Materials

Magnetic Materials

Author: Nicola Ann Spaldin

Publisher: Cambridge University Press

Published: 2003-03-20

Total Pages: 228

ISBN-13: 9780521016582

DOWNLOAD EBOOK

This book covers the fundamentals of magnetism and the basic theories and applications of conventional magnetic materials. In addition there is extensive discussion of novel magnetic phenomena and their modern device applications. The book starts with a review of elementary magnetostatics and magnetic materials, followed by a discussion of the atomic origins of magnetism. The properties and applications of ferro-, ferri, para-, dia- and antiferro-magnets are surveyed, and the basic theories that describe them are outlined. The final part of the book focuses on novel magnetic phenomena, and on magnetic materials in modern technological applications. Based on a course given by the author in the Materials Department at UC Santa Barbara, the book is targeted at graduate and advanced undergraduate students as well as researchers new to the field. Highly illustrated, containing numerous homework problems and worked solutions, this book is ideal for a one semester course in magnetic materials.


NMR of Paramagnetic Molecules

NMR of Paramagnetic Molecules

Author: G. N. La Mar

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 695

ISBN-13: 1483272451

DOWNLOAD EBOOK

NMR of Paramagnetic Molecules: Principles and Applications is a compendium of papers that discusses the physical principles behind the technique of nuclear magnetic resonance, as well as, evaluates the scope and limitation of the applications of NMR in chemistry and biology. These papers emphasize the applications of the technique in chemistry and biochemistry where it widely used, particularlyon NMR experiments in the liquid state. Some papers describe the theoretical factors governing the resonance position and linewidth, and then also interpret magnetic resonance parameters in terms of electronic structure. Another paper investigates the gap between the mathematical complexities of earlier experiments and the operational aspects of chemical information from the spectra. Examples show studies in biochemical molecules and process in events where contact interactions are present either as a result of intrinsic molecular paramagnetism or are just induced through the addition of suitable paramagnetic probes. One paper presents the definitive and controversial results involving stereochemistry and deuterium NMR. This collection of papers will prove useful for nuclear physicists, researchers, and academicians in the field of nuclear physics.


NMR of Paramagnetic Molecules

NMR of Paramagnetic Molecules

Author: Lawrence J. Berliner

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 450

ISBN-13: 1461528860

DOWNLOAD EBOOK

The first of a two volume set, Volume 12 provides a long-awaited compilation of NMR theory to paramagnetic molecules. International experts report the latest developments in NMR methodology as applied to strongly relaxed and shifted resonances, detail the theoretical aspects of paramagnetic shift and relaxation, and discuss the interpretive bases of these molecular properties in relation to the structure and function of various paramagnetic molecules.


Electron Spin Resonance of Paramagnetic Crystals

Electron Spin Resonance of Paramagnetic Crystals

Author: L. Sorin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 268

ISBN-13: 1461586909

DOWNLOAD EBOOK

The authors of this contribution to the literature of resonance spectroscopy in paramagnetic systems are primarily concerned with the properties of the rare earth ions and, as such, the formal derivation of crystal field theory is set out in a manner which reflects this dominant interest. The ions of the 3d transition group are perhaps given too cursory a treatment in Chapter Two for those students of RF spectroscopy who have a somewhat less rare-earth oriented interest in the subject. Since the exam ples cited in the text do include some 3d transition ions, it is perhaps worthwhile in a preface of this sort to extend the broad theoretical concepts and group characteriza tion of Chapter Two to cover, in a somewhat more detailed manner, the derivation of the spin-Hamiltonian for this case. In Chapter Two, mention is made of the fact that for the 4f rare earth ions the spin orbit coupling energy is in general large compared to the crystal field influence of the surrounding ligand matrix. In such a case, the quantum number J is a good quantum number for the rare earth ion in question and the crystal field effects are taken into account within 1M, states. In this formulation, which is pursued in detail in this book, the effects of spin-orbit coupling have been taken care of at the very outset by the d~"ining of the 1M, states.


Electron Paramagnetic Resonance of Exchange Coupled Systems

Electron Paramagnetic Resonance of Exchange Coupled Systems

Author: Alessandro Bencini

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 299

ISBN-13: 3642745997

DOWNLOAD EBOOK

This book is intended to collect in one place as much information as possible on the use of EPR spectroscopy in the analysis of systems in which two or more spins are magnetically coupled. This is a field where research is very active and chemists are elbow-to-elbow with physicists and biologists in the forefront. Here, as in many other fields, the contributions coming from different disciplines are very important, but for active researchers it is sometimes difficult to follow the literature, due to differences in languages, and sources which are familiar to, e. g. , a physicist, are exotic to a chemist. Therefore, an effort is needed in order to provide a unitary description of the many different phenomena which are collected under the title. In order to define the arguments which are treated, it is useful to state clearly what is not contained here. So we do not treat magnetic phenomena in conductors and we neglect ferro- and antiferromagnetic resonance. The basic foundations of EPR spectroscopy are supposed to be known by the reader, while we introduce the basis of magnetic interactions between spins. In the first two chapters we review the foundations of exchange interactions, trying to show how the magnetic parameters are bound to the electronic structure of the interacting centers.


Electron Paramagnetic Resonance in Modern Carbon-Based Nanomaterials

Electron Paramagnetic Resonance in Modern Carbon-Based Nanomaterials

Author: Dariya Savchenko

Publisher: Bentham Science Publishers

Published: 2018-06-05

Total Pages: 304

ISBN-13: 168108693X

DOWNLOAD EBOOK

This volume presents information about several topics in the field of electron paramagnetic resonance (EPR) study of carbon-containing nanomaterials. It introduces the reader to an array of experimental and theoretical approaches for the analysis of paramagnetic centers (dangling bonds, interface defects, vacancies, and impurities) usually observed in modern carbon-containing materials such as nanographites, graphene, disordered onion-like carbon nanospheres (DOLCNS), single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNT), graphene oxide (GO), reduced graphene oxide (rGO), nanodiamonds, silicon carbonitride (SiCN) and silicon carbide (SiC) based composites and thin films. In particular, the book describes in detail: • The fundamentals of EPR spectroscopy and its application to the carbon-containing materials; • The resolution of the EPR signals from different species in carbon materials; • EPR characterization of spin dynamics in carbon nanomaterials; • Magnetic properties of DWCNTs and MWCNTs polymer composites; • EPR investigations on GO, rGO and CNTs with different chemical functionalities; • EPR spectroscopy of semiconducting SWCNTs thin films and their transistors; • In-situ EPR investigations of the oxygenation processes in coal and graphene materials; • The two-temperature EPR measurement method applied to carbonaceous solids; • Characterization of impurities in nanodiamonds and SiC nanomaterials and related size effects by CW and pulse EPR techniques; • Application of multifrequency EPR to the study of paramagnetic defects in a-Si1-xCx:H thin films and a-SiCxNy based composites. This volume is a useful guide for researchers interested in the EPR study of paramagnetic centers in the carbon-containing thin films, nanomaterials, ceramics, etc. It is also a valuable teaching tool at graduate and postgraduate levels for advanced courses in analytical chemistry, applied sciences and spectroscopy.


Electron Paramagnetic Resonance

Electron Paramagnetic Resonance

Author: John A. Weil

Publisher: John Wiley & Sons

Published: 2007-01-09

Total Pages: 690

ISBN-13: 0470084979

DOWNLOAD EBOOK

This book provides an introduction to the underlying theory, fundamentals, and applications of EPR spectroscopy, as well as new developments in the area. Knowledge of the topics presented will allow the reader to interpret of a wide range of EPR spectra, as well as help them to apply EPR techniques to problem solving in a wide range of areas: organic, inorganic, biological, and analytical chemistry; chemical physics, geophysics, and minerology. Includes updated information on high frequency and multi-frequency EPR, pulsed microwave techniques and spectra analysis, dynamic effects, relaxation phenomena, computer-based spectra simulation, biomedical aspects of EPR, and more Equips readers with sufficient knowledge of EPR techniques to go on in their specialized area of interest Provides problem sets and concise bibliographies at the end of each chapter, plus several tutorial appendices on topics like mathematical operations, quantum mechanics of angular momentum, experimental considerations.


INTRODUCTION TO SOLID STATE PHYSICS, Second Edition

INTRODUCTION TO SOLID STATE PHYSICS, Second Edition

Author: KUMAR, ARUN

Publisher: PHI Learning Pvt. Ltd.

Published: 2015-10-01

Total Pages: 530

ISBN-13: 8120351479

DOWNLOAD EBOOK

Introduction to Solid State Physics, in its Second Edition, provides a comprehensive introduction to the physical properties of crystalline solids. It explains the structure of crystals, theory of crystal diffraction and the reciprocal lattice. As the book advances, it describes different kinds of imperfections in crystals, bonding in solids, and vibration in one-dimensional monoatomic and diatomic linear lattice. Different theories of specific heat, thermal conductivity of solids and lattice thermal conductivity are thoroughly dealt with. Coverage also includes the free electron theory, band theory of solids and semiconductors. In addition, the book also describes in detail the magnetic properties of solids and superconductivity. Finally, the book includes discussions on lasers, nanotechnology and the basic principles of fibre optics and holography. Some new topics like cellular method, quantum Hall effect, de Haas van Alphen effect, Pauli paramagnetism and semiconductor laser have been added in the present edition of the book to make it more useful for the students. The book is designed to meet the requirements of undergraduate and postgraduate students of physics for their courses in solid state physics, condensed matter physics and material science. KEY FEATURES • Puts a conceptual emphasis on the subject. • Includes numerous diagrams and figures to clarify the concepts. • Gives step-by-step explanations of theories. • Provides chapter-end exercises to test the knowledge acquired.