PARALLEL IMPLEMENTATION OF THE BOUNDARY ELEMENT METHOD FOR ELECTROMAGNETIC SOURCE IMAGING OF THE HUMAN BRAIN.

PARALLEL IMPLEMENTATION OF THE BOUNDARY ELEMENT METHOD FOR ELECTROMAGNETIC SOURCE IMAGING OF THE HUMAN BRAIN.

Author:

Publisher:

Published: 2005

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Human brain functions are based on the electrochemical activity and interaction of the neurons constituting the brain. Some brain diseases are characterized by abnormalities of this activity. Detection of the location and orientation of this electrical activity is called electro-magnetic source imaging (EMSI) and is of signicant importance since it promises to serve as a powerful tool for neuroscience. Boundary Element Method (BEM) is a method applicable for EMSI on realistic head geometries that generates large systems of linear equations with dense matrices. Generation and solution of these matrix equations are time and memory consuming due to the size of the matrices and high computational complexity of direct methods. This study presents a relatively cheap and e ective solution the this problem and reduces the processing times to clinically acceptable values using parallel cluster of personal computers on a local area network. For this purpose, a cluster of 8 workstations is used. A parallel BEM solver is implemented that distributes the model eciently to the processors. The parallel solver for BEM is developed using the PETSc library. The performance of the iv solver is evaluated in terms of CPU and memory usage for di erent number of processors. For a 15011 node mesh, a speed-up eciency of 97.5% is observed when computing transfer matrices. Individual solutions can be obtained in 520 ms on 8 processors with 94.2% parallellization eciency. It was observed that workstation clusters is a cost e ective tool for solving complex BEM models in clinically acceptable time. E ect of parallelization on inverse problem is also demonstrated by a genetic algorithm and very similar speed-up is obtained.


Electroencephalography and Magnetoencephalography

Electroencephalography and Magnetoencephalography

Author: George Dassios

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-06-08

Total Pages: 192

ISBN-13: 3110545780

DOWNLOAD EBOOK

Electroencephalography and magnetoencephalography are the two most efficient techniques to study the functional brain. This book completely aswers the fundamental mathematical question of uniqueness of the representations obtained using these techniques, and also covers many other concrete results for special geometric models of the brain, presenting the research of the authors and their groups in the last two decades.


Fast and Efficient Algorithms in Computational Electromagnetics

Fast and Efficient Algorithms in Computational Electromagnetics

Author: Weng Cho Chew

Publisher: Artech House Publishers

Published: 2001

Total Pages: 0

ISBN-13: 9781580531528

DOWNLOAD EBOOK

Here's a cutting-edge resource that brings you up-to-date with all the recent advances in computational electromagnetics. You get the most-current information available on the multilevel fast multipole algorithm in both the time and frequency domains, as well as the latest developments in fast algorithms for low frequencies and specialized structures, such as the planar and layered media. These algorithms solve large electromagnetics problems with shorter turn around time, using less computer memory.


Magnetoencephalography

Magnetoencephalography

Author: Selma Supek

Publisher: Springer

Published: 2014-08-07

Total Pages: 999

ISBN-13: 3642330452

DOWNLOAD EBOOK

Magnetoencephalography (MEG) is an invaluable functional brain imaging technique that provides direct, real-time monitoring of neuronal activity necessary for gaining insight into dynamic cortical networks. Our intentions with this book are to cover the richness and transdisciplinary nature of the MEG field, make it more accessible to newcomers and experienced researchers and to stimulate growth in the MEG area. The book presents a comprehensive overview of MEG basics and the latest developments in methodological, empirical and clinical research, directed toward master and doctoral students, as well as researchers. There are three levels of contributions: 1) tutorials on instrumentation, measurements, modeling, and experimental design; 2) topical reviews providing extensive coverage of relevant research topics; and 3) short contributions on open, challenging issues, future developments and novel applications. The topics range from neuromagnetic measurements, signal processing and source localization techniques to dynamic functional networks underlying perception and cognition in both health and disease. Topical reviews cover, among others: development on SQUID-based and novel sensors, multi-modal integration (low field MRI and MEG; EEG and fMRI), Bayesian approaches to multi-modal integration, direct neuronal imaging, novel noise reduction methods, source-space functional analysis, decoding of brain states, dynamic brain connectivity, sensory-motor integration, MEG studies on perception and cognition, thalamocortical oscillations, fetal and neonatal MEG, pediatric MEG studies, cognitive development, clinical applications of MEG in epilepsy, pre-surgical mapping, stroke, schizophrenia, stuttering, traumatic brain injury, post-traumatic stress disorder, depression, autism, aging and neurodegeneration, MEG applications in cognitive neuropharmacology and an overview of the major open-source analysis tools.


Handbook of Neural Activity Measurement

Handbook of Neural Activity Measurement

Author: Romain Brette

Publisher: Cambridge University Press

Published: 2012-09-06

Total Pages: 493

ISBN-13: 0521516226

DOWNLOAD EBOOK

Underlying principles of the various techniques are explained, enabling neuroscientists to extract meaningful information from their measurements.


Acoustic and Electromagnetic Equations

Acoustic and Electromagnetic Equations

Author: Jean-Claude Nedelec

Publisher: Springer Science & Business Media

Published: 2001-03-30

Total Pages: 356

ISBN-13: 9780387951553

DOWNLOAD EBOOK

Acoustic and electromagnetic waves underlie a range of modern technology from sonar, radio, and television to microwave heating and electromagnetic compatibility analysis. This book, written by an international researcher, presents some of the research in a complete way. It is useful for graduate students in mathematics, physics, and engineering.


Brain and Human Body Modeling 2020

Brain and Human Body Modeling 2020

Author: Sergey N. Makarov

Publisher: Springer Nature

Published: 2021

Total Pages: 395

ISBN-13: 3030456234

DOWNLOAD EBOOK

The 41st Annual International Conference of the IEEE EMBS, took place between July 23 and 27, 2019, in Berlin, Germany. The focus was on "Biomedical engineering ranging from wellness to intensive care." This conference provided an opportunity for researchers from academia and industry to discuss a variety of topics relevant to EMBS and hosted the 4th Annual Invited Session on Computational Human Models. At this session, a bevy of research related to the development of human phantoms was presented, together with a substantial variety of practical applications explored through simulation.


Integral Equation Methods for Electromagnetics

Integral Equation Methods for Electromagnetics

Author: John L. Volakis

Publisher: IET

Published: 2012-06-30

Total Pages: 407

ISBN-13: 1891121936

DOWNLOAD EBOOK

This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the most advanced and current solutions.