Overcoming Barriers to Electric-Vehicle Deployment

Overcoming Barriers to Electric-Vehicle Deployment

Author: National Research Council

Publisher: National Academies Press

Published: 2013-06-18

Total Pages: 102

ISBN-13: 0309284511

DOWNLOAD EBOOK

The electric vehicle offers many promises-increasing U.S. energy security by reducing petroleum dependence, contributing to climate-change initiatives by decreasing greenhouse gas (GHG) emissions, stimulating long-term economic growth through the development of new technologies and industries, and improving public health by improving local air quality. There are, however, substantial technical, social, and economic barriers to widespread adoption of electric vehicles, including vehicle cost, small driving range, long charging times, and the need for a charging infrastructure. In addition, people are unfamiliar with electric vehicles, are uncertain about their costs and benefits, and have diverse needs that current electric vehicles might not meet. Although a person might derive some personal benefits from ownership, the costs of achieving the social benefits, such as reduced GHG emissions, are borne largely by the people who purchase the vehicles. Given the recognized barriers to electric-vehicle adoption, Congress asked the Department of Energy (DOE) to commission a study by the National Academies to address market barriers that are slowing the purchase of electric vehicles and hindering the deployment of supporting infrastructure. As a result of the request, the National Research Council (NRC)-a part of the National Academies-appointed the Committee on Overcoming Barriers to Electric-Vehicle Deployment. This committee documented their findings in two reports-a short interim report focused on near-term options, and a final comprehensive report. Overcoming Barriers to Electric-Vehicle Deployment fulfills the request for the short interim report that addresses specifically the following issues: infrastructure needs for electric vehicles, barriers to deploying the infrastructure, and possible roles of the federal government in overcoming the barriers. This report also includes an initial discussion of the pros and cons of the possible roles. This interim report does not address the committee's full statement of task and does not offer any recommendations because the committee is still in its early stages of data-gathering. The committee will continue to gather and review information and conduct analyses through late spring 2014 and will issue its final report in late summer 2014. Overcoming Barriers to Electric-Vehicle Deployment focuses on the light-duty vehicle sector in the United States and restricts its discussion of electric vehicles to plug-in electric vehicles (PEVs), which include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The common feature of these vehicles is that their batteries are charged by being plugged into the electric grid. BEVs differ from PHEVs because they operate solely on electricity stored in a battery (that is, there is no other power source); PHEVs have internal combustion engines that can supplement the electric power train. Although this report considers PEVs generally, the committee recognizes that there are fundamental differences between PHEVs and BEVs.


Overcoming Barriers to Electric-vehicle Deployment

Overcoming Barriers to Electric-vehicle Deployment

Author: National Research Council

Publisher:

Published: 2013

Total Pages: 0

ISBN-13: 9780309284486

DOWNLOAD EBOOK

The electric vehicle offers many promises--increasing U.S. energy security by reducing petroleum dependence, contributing to climate-change initiatives by decreasing greenhouse gas (GHG) emissions, stimulating long-term economic growth through the development of new technologies and industries, and improving public health by improving local air quality. There are, however, substantial technical, social, and economic barriers to widespread adoption of electric vehicles, including vehicle cost, small driving range, long charging times, and the need for a charging infrastructure. In addition, people are unfamiliar with electric vehicles, are uncertain about their costs and benefits, and have diverse needs that current electric vehicles might not meet. Although a person might derive some personal benefits from ownership, the costs of achieving the social benefits, such as reduced GHG emissions, are borne largely by the people who purchase the vehicles. Given the recognized barriers to electric-vehicle adoption, Congress asked the Department of Energy (DOE) to commission a study by the National Academies to address market barriers that are slowing the purchase of electric vehicles and hindering the deployment of supporting infrastructure. As a result of the request, the National Research Council (NRC)--a part of the National Academies--appointed the Committee on Overcoming Barriers to Electric-Vehicle Deployment. This committee documented their findings in two reports--a short interim report focused on near-term options, and a final comprehensive report. Overcoming Barriers to Electric-Vehicle Deployment fulfills the request for the short interim report that addresses specifically the following issues: infrastructure needs for electric vehicles, barriers to deploying the infrastructure, and possible roles of the federal government in overcoming the barriers. This report also includes an initial discussion of the pros and cons of the possible roles. This interim report does not address the committee's full statement of task and does not offer any recommendations because the committee is still in its early stages of data-gathering. The committee will continue to gather and review information and conduct analyses through late spring 2014 and will issue its final report in late summer 2014. Overcoming Barriers to Electric-Vehicle Deployment focuses on the light-duty vehicle sector in the United States and restricts its discussion of electric vehicles to plug-in electric vehicles (PEVs), which include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The common feature of these vehicles is that their batteries are charged by being plugged into the electric grid. BEVs differ from PHEVs because they operate solely on electricity stored in a battery (that is, there is no other power source); PHEVs have internal combustion engines that can supplement the electric power train. Although this report considers PEVs generally, the committee recognizes that there are fundamental differences between PHEVs and BEVs.


Overcoming Barriers to Deployment of Plug-in Electric Vehicles

Overcoming Barriers to Deployment of Plug-in Electric Vehicles

Author: National Research Council

Publisher: National Academies Press

Published: 2015-06-26

Total Pages: 231

ISBN-13: 0309372208

DOWNLOAD EBOOK

In the past few years, interest in plug-in electric vehicles (PEVs) has grown. Advances in battery and other technologies, new federal standards for carbon-dioxide emissions and fuel economy, state zero-emission-vehicle requirements, and the current administration's goal of putting millions of alternative-fuel vehicles on the road have all highlighted PEVs as a transportation alternative. Consumers are also beginning to recognize the advantages of PEVs over conventional vehicles, such as lower operating costs, smoother operation, and better acceleration; the ability to fuel up at home; and zero tailpipe emissions when the vehicle operates solely on its battery. There are, however, barriers to PEV deployment, including the vehicle cost, the short all-electric driving range, the long battery charging time, uncertainties about battery life, the few choices of vehicle models, and the need for a charging infrastructure to support PEVs. What should industry do to improve the performance of PEVs and make them more attractive to consumers? At the request of Congress, Overcoming Barriers to Deployment of Plug-in Electric Vehicles identifies barriers to the introduction of electric vehicles and recommends ways to mitigate these barriers. This report examines the characteristics and capabilities of electric vehicle technologies, such as cost, performance, range, safety, and durability, and assesses how these factors might create barriers to widespread deployment. Overcoming Barriers to Deployment of Plug-in Electric Vehicles provides an overview of the current status of PEVs and makes recommendations to spur the industry and increase the attractiveness of this promising technology for consumers. Through consideration of consumer behaviors, tax incentives, business models, incentive programs, and infrastructure needs, this book studies the state of the industry and makes recommendations to further its development and acceptance.


Electric Vehicles: Prospects and Challenges

Electric Vehicles: Prospects and Challenges

Author: Tariq Muneer

Publisher: Elsevier

Published: 2017-07-11

Total Pages: 588

ISBN-13: 0128030402

DOWNLOAD EBOOK

Electric Vehicles: Prospects and Challenges looks at recent design methodologies and technological advancements in electric vehicles and the integration of electric vehicles in the smart grid environment, comprehensively covering the fundamentals, theory and design, recent developments and technical issues involved with electric vehicles. Considering the prospects, challenges and policy status of specific regions and vehicle deployment, the global case study references make this book useful for academics and researchers in all engineering and sustainable transport areas. - Presents a systematic and integrated reference on the essentials of theory and design of electric vehicle technologies - Provides a comprehensive look at the research and development involved in the use of electric vehicle technologies - Includes global case studies from leading EV regions, including Nordic and European countries China and India


Developing Charging Infrastructure and Technologies for Electric Vehicles

Developing Charging Infrastructure and Technologies for Electric Vehicles

Author: Alam, Mohammad Saad

Publisher: IGI Global

Published: 2021-12-31

Total Pages: 343

ISBN-13: 1799868605

DOWNLOAD EBOOK

The increase in air pollution and vehicular emissions has led to the development of the renewable energy-based generation and electrification of transportation. Further, the electrification shift faces an enormous challenge due to limited driving range, long charging time, and high initial cost of deployment. Firstly, there has been a discussion on renewable energy such as how wind power and solar power can be generated by wind turbines and photovoltaics, respectively, while these are intermittent in nature. The combination of these renewable energy resources with available power generation system will make electric vehicle (EV) charging sustainable and viable after the payback period. Recently, there has also been a significant discussion focused on various EV charging types and the level of power for charging to minimize the charging time. By focusing on both sustainable and renewable energy, as well as charging infrastructures and technologies, the future for EV can be explored. Developing Charging Infrastructure and Technologies for Electric Vehicles reviews and discusses the state of the art in electric vehicle charging technologies, their applications, economic, environmental, and social impact, and integration with renewable energy. This book captures the state of the art in electric vehicle charging infrastructure deployment, their applications, architectures, and relevant technologies. In addition, this book identifies potential research directions and technologies that facilitate insights on EV charging in various charging places such as smart home charging, parking EV charging, and charging stations. This book will be essential for power system architects, mechanics, electrical engineers, practitioners, developers, practitioners, researchers, academicians, and students interested in the problems and solutions to the state-of-the-art status of electric vehicles.


Transitions to Alternative Vehicles and Fuels

Transitions to Alternative Vehicles and Fuels

Author: National Research Council

Publisher: National Academies Press

Published: 2013-04-14

Total Pages: 395

ISBN-13: 0309268524

DOWNLOAD EBOOK

For a century, almost all light-duty vehicles (LDVs) have been powered by internal combustion engines operating on petroleum fuels. Energy security concerns about petroleum imports and the effect of greenhouse gas (GHG) emissions on global climate are driving interest in alternatives. Transitions to Alternative Vehicles and Fuels assesses the potential for reducing petroleum consumption and GHG emissions by 80 percent across the U.S. LDV fleet by 2050, relative to 2005. This report examines the current capability and estimated future performance and costs for each vehicle type and non-petroleum-based fuel technology as options that could significantly contribute to these goals. By analyzing scenarios that combine various fuel and vehicle pathways, the report also identifies barriers to implementation of these technologies and suggests policies to achieve the desired reductions. Several scenarios are promising, but strong, and effective policies such as research and development, subsidies, energy taxes, or regulations will be necessary to overcome barriers, such as cost and consumer choice.


Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Author: National Research Council

Publisher: National Academies Press

Published: 2015-09-28

Total Pages: 812

ISBN-13: 0309373913

DOWNLOAD EBOOK

The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.


ICIDSSD 2020

ICIDSSD 2020

Author: M. Afshar Alam

Publisher: European Alliance for Innovation

Published: 2021-03-03

Total Pages: 606

ISBN-13: 163190292X

DOWNLOAD EBOOK

The International Conference on ICT for Digital, Smart, and Sustainable Development (ICIDSSD’20) aims to provide an annual platform for the researchers, academicians, and professionals from across the world. ICIDSSD’20, held at Jamia Hamdard, New Delhi, India, is the second international conference of this series of conferences to be held annually. The conference majorly focuses on the recent developments in the areas relating to Information and Communication Technologies and contributing to Sustainable Development. ICIDSSD’20 has attracted research papers pertaining to an array of exciting research areas. The selected papers cover a wide range of topics including but not limited to Sustainable Development, Green Computing, Smart City, Artificial Intelligence, Big Data, Machine Learning, Cloud Computing, IoT, ANN, Cyber Security, and Data Science. Papers have primarily been judged on originality, presentation, relevance, and quality of work. Papers that clearly demonstrate results have been preferred. We thank our esteemed authors for having shown confidence in us and entrusting us with the publication of their research papers. The success of the conference would not have been possible without the submission of their quality research works. We thank the members of the International Scientific Advisory Committee, Technical Program Committee and members of all the other committees for their advice, guidance, and efforts. Also, we are grateful to our technical partners and sponsors, viz. HNF, EAI, ISTE, AICTE, IIC, CSI, IETE, Department of Higher Education, MHRD and DST for sponsorship and assistance.


The Global Rise of the Modern Plug-In Electric Vehicle

The Global Rise of the Modern Plug-In Electric Vehicle

Author: John D. Graham

Publisher: Edward Elgar Publishing

Published: 2021-04-30

Total Pages: 496

ISBN-13: 1800880138

DOWNLOAD EBOOK

We may be standing on the precipice of a revolution in propulsion not seen since the internal combustion engine replaced the horse and buggy. The anticipated proliferation of electric cars will influence the daily lives of motorists, the economies of different countries and regions, urban air quality and global climate change. If you want to understand how quickly the transition is likely to occur, and the factors that will influence the predictions of the pace of the transition, this book will be an illuminating read.


Vehicle-to-Grid

Vehicle-to-Grid

Author: Lance Noel

Publisher: Springer

Published: 2019-01-04

Total Pages: 271

ISBN-13: 3030048640

DOWNLOAD EBOOK

​This book defines and charts the barriers and future of vehicle-to-grid technology: a technology that could dramatically reduce emissions, create revenue, and accelerate the adoption of battery electric cars. This technology connects the electric power grid and the transportation system in ways that will enable electric vehicles to store renewable energy and offer valuable services to the electricity grid and its markets. To understand the complex features of this emergent technology, the authors explore the current status and prospect of vehicle-to-grid, and detail the sociotechnical barriers that may impede its fruitful deployment. The book concludes with a policy roadmap to advise decision-makers on how to optimally implement vehicle-to-grid and capture its benefits to society while attempting to avoid the impediments discussed earlier in the book.