Clifford Algebras and Spinor Structures

Clifford Algebras and Spinor Structures

Author: Rafal Ablamowicz

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 428

ISBN-13: 9401584222

DOWNLOAD EBOOK

This volume is dedicated to the memory of Albert Crumeyrolle, who died on June 17, 1992. In organizing the volume we gave priority to: articles summarizing Crumeyrolle's own work in differential geometry, general relativity and spinors, articles which give the reader an idea of the depth and breadth of Crumeyrolle's research interests and influence in the field, articles of high scientific quality which would be of general interest. In each of the areas to which Crumeyrolle made significant contribution - Clifford and exterior algebras, Weyl and pure spinors, spin structures on manifolds, principle of triality, conformal geometry - there has been substantial progress. Our hope is that the volume conveys the originality of Crumeyrolle's own work, the continuing vitality of the field he influenced, and the enduring respect for, and tribute to, him and his accomplishments in the mathematical community. It isour pleasure to thank Peter Morgan, Artibano Micali, Joseph Grifone, Marie Crumeyrolle and Kluwer Academic Publishers for their help in preparingthis volume.


Clifford Algebras and Spinors

Clifford Algebras and Spinors

Author: Pertti Lounesto

Publisher: Cambridge University Press

Published: 2001-05-03

Total Pages: 352

ISBN-13: 0521005515

DOWNLOAD EBOOK

This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.


An Introduction to Clifford Algebras and Spinors

An Introduction to Clifford Algebras and Spinors

Author: Jayme Vaz Jr.

Publisher: Oxford University Press

Published: 2016

Total Pages: 257

ISBN-13: 0198782926

DOWNLOAD EBOOK

This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.


Clifford Algebras and Their Application in Mathematical Physics

Clifford Algebras and Their Application in Mathematical Physics

Author: Volker Dietrich

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 458

ISBN-13: 9401150362

DOWNLOAD EBOOK

Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.


Clifford Algebra and Spinor-Valued Functions

Clifford Algebra and Spinor-Valued Functions

Author: R. Delanghe

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 501

ISBN-13: 9401129223

DOWNLOAD EBOOK

This volume describes the substantial developments in Clifford analysis which have taken place during the last decade and, in particular, the role of the spin group in the study of null solutions of real and complexified Dirac and Laplace operators. The book has six main chapters. The first two (Chapters 0 and I) present classical results on real and complex Clifford algebras and show how lower-dimensional real Clifford algebras are well-suited for describing basic geometric notions in Euclidean space. Chapters II and III illustrate how Clifford analysis extends and refines the computational tools available in complex analysis in the plane or harmonic analysis in space. In Chapter IV the concept of monogenic differential forms is generalized to the case of spin-manifolds. Chapter V deals with analysis on homogeneous spaces, and shows how Clifford analysis may be connected with the Penrose transform. The volume concludes with some Appendices which present basic results relating to the algebraic and analytic structures discussed. These are made accessible for computational purposes by means of computer algebra programmes written in REDUCE and are contained on an accompanying floppy disk.


Clifford Algebras with Numeric and Symbolic Computations

Clifford Algebras with Numeric and Symbolic Computations

Author: Rafal Ablamowicz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 328

ISBN-13: 1461581575

DOWNLOAD EBOOK

This edited survey book consists of 20 chapters showing application of Clifford algebra in quantum mechanics, field theory, spinor calculations, projective geometry, Hypercomplex algebra, function theory and crystallography. Many examples of computations performed with a variety of readily available software programs are presented in detail.


Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics

Author: Rafał Abłamowicz

Publisher: Springer Science & Business Media

Published: 2000

Total Pages: 500

ISBN-13: 9780817641825

DOWNLOAD EBOOK

The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, q-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.


Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics

Author: Rafal Ablamowicz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 470

ISBN-13: 1461213681

DOWNLOAD EBOOK

The plausible relativistic physical variables describing a spinning, charged and massive particle are, besides the charge itself, its Minkowski (four) po sition X, its relativistic linear (four) momentum P and also its so-called Lorentz (four) angular momentum E # 0, the latter forming four trans lation invariant part of its total angular (four) momentum M. Expressing these variables in terms of Poincare covariant real valued functions defined on an extended relativistic phase space [2, 7J means that the mutual Pois son bracket relations among the total angular momentum functions Mab and the linear momentum functions pa have to represent the commutation relations of the Poincare algebra. On any such an extended relativistic phase space, as shown by Zakrzewski [2, 7], the (natural?) Poisson bracket relations (1. 1) imply that for the splitting of the total angular momentum into its orbital and its spin part (1. 2) one necessarily obtains (1. 3) On the other hand it is always possible to shift (translate) the commuting (see (1. 1)) four position xa by a four vector ~Xa (1. 4) so that the total angular four momentum splits instead into a new orbital and a new (Pauli-Lubanski) spin part (1. 5) in such a way that (1. 6) However, as proved by Zakrzewski [2, 7J, the so-defined new shifted four a position functions X must fulfill the following Poisson bracket relations: (1.


Geometric Algebra with Applications in Science and Engineering

Geometric Algebra with Applications in Science and Engineering

Author: Eduardo Bayro Corrochano

Publisher: Springer Science & Business Media

Published: 2011-06-28

Total Pages: 607

ISBN-13: 1461201594

DOWNLOAD EBOOK

The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling of disbelief that the fundamental geometric product of vectors could have been left out of his undergraduate mathematics education. Geometric algebra provides a rich, general mathematical framework for the develop ment of multilinear algebra, projective and affine geometry, calculus on a manifold, the representation of Lie groups and Lie algebras, the use of the horosphere and many other areas. This book is addressed to a broad audience of applied mathematicians, physicists, computer scientists, and engineers.