Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms

Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms

Author: Mohamed Ibrahim

Publisher: CRC Press

Published: 2020-05-31

Total Pages: 349

ISBN-13: 1000082660

DOWNLOAD EBOOK

A microfluidic biochip is an engineered fluidic device that controls the flow of analytes, thereby enabling a variety of useful applications. According to recent studies, the fields that are best set to benefit from the microfluidics technology, also known as lab-on-chip technology, include forensic identification, clinical chemistry, point-of-care (PoC) diagnostics, and drug discovery. The growth in such fields has significantly amplified the impact of microfluidics technology, whose market value is forecast to grow from $4 billion in 2017 to $13.2 billion by 2023. The rapid evolution of lab-on-chip technologies opens up opportunities for new biological or chemical science areas that can be directly facilitated by sensor-based microfluidics control. For example, the digital microfluidics-based ePlex system from GenMarkDx enables automated disease diagnosis and can bring syndromic testing near patients everywhere. However, as the applications of molecular biology grow, the adoption of microfluidics in many applications has not grown at the same pace, despite the concerted effort of microfluidic systems engineers. Recent studies suggest that state-of-the-art design techniques for microfluidics have two major drawbacks that need to be addressed appropriately: (1) current lab-on-chip systems were only optimized as auxiliary components and are only suitable for sample-limited analyses; therefore, their capabilities may not cope with the requirements of contemporary molecular biology applications; (2) the integrity of these automated lab-on-chip systems and their biochemical operations are still an open question since no protection schemes were developed against adversarial contamination or result-manipulation attacks. Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms provides solutions to these challenges by introducing a new design flow based on the realistic modeling of contemporary molecular biology protocols. It also presents a microfluidic security flow that provides a high-level of confidence in the integrity of such protocols. In summary, this book creates a new research field as it bridges the technical skills gap between microfluidic systems and molecular biology protocols but it is viewed from the perspective of an electronic/systems engineer.


Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms

Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms

Author: Mohamed Ibrahim

Publisher: CRC Press

Published: 2020-05-31

Total Pages: 335

ISBN-13: 1000082709

DOWNLOAD EBOOK

A microfluidic biochip is an engineered fluidic device that controls the flow of analytes, thereby enabling a variety of useful applications. According to recent studies, the fields that are best set to benefit from the microfluidics technology, also known as lab-on-chip technology, include forensic identification, clinical chemistry, point-of-care (PoC) diagnostics, and drug discovery. The growth in such fields has significantly amplified the impact of microfluidics technology, whose market value is forecast to grow from $4 billion in 2017 to $13.2 billion by 2023. The rapid evolution of lab-on-chip technologies opens up opportunities for new biological or chemical science areas that can be directly facilitated by sensor-based microfluidics control. For example, the digital microfluidics-based ePlex system from GenMarkDx enables automated disease diagnosis and can bring syndromic testing near patients everywhere. However, as the applications of molecular biology grow, the adoption of microfluidics in many applications has not grown at the same pace, despite the concerted effort of microfluidic systems engineers. Recent studies suggest that state-of-the-art design techniques for microfluidics have two major drawbacks that need to be addressed appropriately: (1) current lab-on-chip systems were only optimized as auxiliary components and are only suitable for sample-limited analyses; therefore, their capabilities may not cope with the requirements of contemporary molecular biology applications; (2) the integrity of these automated lab-on-chip systems and their biochemical operations are still an open question since no protection schemes were developed against adversarial contamination or result-manipulation attacks. Optimization of Trustworthy Biomolecular Quantitative Analysis Using Cyber-Physical Microfluidic Platforms provides solutions to these challenges by introducing a new design flow based on the realistic modeling of contemporary molecular biology protocols. It also presents a microfluidic security flow that provides a high-level of confidence in the integrity of such protocols. In summary, this book creates a new research field as it bridges the technical skills gap between microfluidic systems and molecular biology protocols but it is viewed from the perspective of an electronic/systems engineer.


Micro-Electrode-Dot-Array Digital Microfluidic Biochips

Micro-Electrode-Dot-Array Digital Microfluidic Biochips

Author: Zipeng Li

Publisher: Springer

Published: 2019-02-21

Total Pages: 0

ISBN-13: 9783030029630

DOWNLOAD EBOOK

This book provides an insightful guide to the design, testing and optimization of micro-electrode-dot-array (MEDA) digital microfluidic biochips. The authors focus on the characteristics specific for MEDA biochips, e.g., real-time sensing and advanced microfluidic operations like lamination mixing and droplet shape morphing. Readers will be enabled to enhance the automated design and use of MEDA and to develop a set of solutions to facilitate the full exploitation of design complexities that are possible with standard CMOS fabrication techniques. The book provides the first set of design automation and test techniques for MEDA biochips. The methods described in this book have been validated using fabricated MEDA biochips in the laboratory. Readers will benefit from an in-depth look at the MEDA platform and how to combine microfluidics with software, e.g., applying biomolecular protocols to software-controlled and cyberphysical microfluidic biochips.


Digital Microfluidic Biochips

Digital Microfluidic Biochips

Author: Krishnendu Chakrabarty

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 228

ISBN-13: 1420008307

DOWNLOAD EBOOK

Digital Microfluidic Biochips focuses on the automated design and production of microfluidic-based biochips for large-scale bioassays and safety-critical applications. Bridging areas of electronic design automation with microfluidic biochip research, the authors present a system-level design automation framework that addresses key issues in the design, analysis, and testing of digital microfluidic biochips. The book describes a new generation of microfluidic biochips with more complex designs that offer dynamic reconfigurability, system scalability, system integration, and defect tolerance. Part I describes a unified design methodology that targets design optimization under resource constraints. Part II investigates cost-effective testing techniques for digital microfluidic biochips that include test resource optimization and fault detection while running normal bioassays. Part III focuses on different reconfiguration-based defect tolerance techniques designed to increase the yield and dependability of digital microfluidic biochips. Expanding upon results from ongoing research on CAD for biochips at Duke University, this book presents new design methodologies that address some of the limitations in current full-custom design techniques. Digital Microfluidic Biochips is an essential resource for achieving the integration of microfluidic components in the next generation of system-on-chip and system-in-package designs.


Factories of the Future

Factories of the Future

Author: Tullio Tolio

Publisher: Springer

Published: 2019-02-14

Total Pages: 494

ISBN-13: 3319943588

DOWNLOAD EBOOK

This book is open access under a CC BY 4.0 license.This book presents results relevant in the manufacturing research field, that are mainly aimed at closing the gap between the academic investigation and the industrial application, in collaboration with manufacturing companies. Several hardware and software prototypes represent the key outcome of the scientific contributions that can be grouped into five main areas, representing different perspectives of the factory domain:1) Evolutionary and reconfigurable factories to cope with dynamic production contexts characterized by evolving demand and technologies, products and processes.2) Factories for sustainable production, asking for energy efficiency, low environmental impact products and processes, new de-production logics, sustainable logistics.3) Factories for the People who need new kinds of interactions between production processes, machines, and human beings to offer a more comfortable and stimulating working environment.4) Factories for customized products that will be more and more tailored to the final user’s needs and sold at cost-effective prices.5) High performance factories to yield the due production while minimizing the inefficiencies caused by failures, management problems, maintenance.This books is primarily targeted to academic researchers and industrial practitioners in the manufacturing domain.


Biochip Technology

Biochip Technology

Author: Jing Cheng

Publisher: CRC Press

Published: 2003-09-02

Total Pages: 453

ISBN-13: 0203305043

DOWNLOAD EBOOK

Biochip technology has experienced explosive growth in recent years and Biochip technology describes the basic manufacturing and fabrication processes and the current range of applications of these chips. Top scientists from the biochip industry and related areas explain the diverse applications of biochips in gene sequencing, expression monitoring, disease diagnosis, tumor examination, ligand assay and drug discovery.


Converging Technologies for Improving Human Performance

Converging Technologies for Improving Human Performance

Author: Mihail C. Roco

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 477

ISBN-13: 9401703590

DOWNLOAD EBOOK

M. C. Roco and W.S. Bainbridge In the early decades of the 21st century, concentrated efforts can unify science based on the unity of nature, thereby advancing the combination of nanotechnology, biotechnology, information technology, and new technologies based in cognitive science. With proper attention to ethical issues and societal needs, converging in human abilities, societal technologies could achieve a tremendous improvement outcomes, the nation's productivity, and the quality of life. This is a broad, cross cutting, emerging and timely opportunity of interest to individuals, society and humanity in the long term. The phrase "convergent technologies" refers to the synergistic combination of four major "NBIC" (nano-bio-info-cogno) provinces of science and technology, each of which is currently progressing at a rapid rate: (a) nanoscience and nanotechnology; (b) biotechnology and biomedicine, including genetic engineering; (c) information technology, including advanced computing and communications; (d) cognitive science, including cognitive neuroscience. Timely and Broad Opportunity. Convergence of diverse technologies is based on material unity at the nanoscale and on technology integration from that scale.


Single Cell Analysis

Single Cell Analysis

Author: Tuhin Subhra Santra

Publisher: MDPI

Published: 2021-06-02

Total Pages: 254

ISBN-13: 3036506284

DOWNLOAD EBOOK

Cells are the most fundamental building block of all living organisms. The investigation of any type of disease mechanism and its progression still remains challenging due to cellular heterogeneity characteristics and physiological state of cells in a given population. The bulk measurement of millions of cells together can provide some general information on cells, but it cannot evolve the cellular heterogeneity and molecular dynamics in a certain cell population. Compared to this bulk or the average measurement of a large number of cells together, single-cell analysis can provide detailed information on each cell, which could assist in developing an understanding of the specific biological context of cells, such as tumor progression or issues around stem cells. Single-cell omics can provide valuable information about functional mutation and a copy number of variations of cells. Information from single-cell investigations can help to produce a better understanding of intracellular interactions and environmental responses of cellular organelles, which can be beneficial for therapeutics development and diagnostics purposes. This Special Issue is inviting articles related to single-cell analysis and its advantages, limitations, and future prospects regarding health benefits.


Integrated Circuit Fabrication

Integrated Circuit Fabrication

Author: Shubham Kumar

Publisher: CRC Press

Published: 2021-04-28

Total Pages: 353

ISBN-13: 1000396401

DOWNLOAD EBOOK

This book covers theoretical and practical aspects of all major steps in the fabrication sequence. This book can be used conveniently in a semester length course on integrated circuit fabrication. This text can also serve as a reference for practicing engineer and scientist in the semiconductor industry. IC Fabrication are ever demanding of technology in rapidly growing industry growth opportunities are numerous. A recent survey shows that integrated circuit currently outnumber humans in UK, USA, India and China. The spectacular advances in the development and application of integrated circuit technology have led to the emergence of microelectronic process engineering as an independent discipline. Integrated circuit fabrication text books typically divide the fabrication sequence into a number of unit processes that are repeated to form the integrated circuit. The effect is to give the book an analysis flavor: a number of loosely related topics each with its own background material. Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.