Systems and Synthetic Metabolic Engineering provides an overview of the development of metabolic engineering within medicine that is fueled by systems and synthetic biology. These newly developed, successful strategies of metabolic engineering guide the audience on how to propose and test proper strategies for metabolic engineering research. In addition to introductory, regulatory and challenges in the field, the book also covers dynamic control and autonomous regulation to control cell metabolism, along with computational modeling and industrial applications. The book is written by leaders in the field, making it ideal for synthetic biologists, researchers, students and anyone working in this area.
Systems Metabolic Engineering is changing the way microbial cell factories are designed and optimized for industrial production. Integrating systems biology and biotechnology with new concepts from synthetic biology enables the global analysis and engineering of microorganisms and bioprocesses at super efficiency and versatility otherwise not accessible. Without doubt, systems metabolic engineering is a major driver towards bio-based production of chemicals, materials and fuels from renewables and thus one of the core technologies of global green growth. In this book, Christoph Wittmann and Sang-Yup Lee have assembled the world leaders on systems metabolic engineering and cover the full story – from genomes and networks via discovery and design to industrial implementation practises. This book is a comprehensive resource for students and researchers from academia and industry interested in systems metabolic engineering. It provides us with the fundaments to targeted engineering of microbial cells for sustainable bio-production and stimulates those who are interested to enter this exiting research field.
Learn more about foundational and advanced topics in metabolic engineering in this comprehensive resource edited by leaders in the field Metabolic Engineering: Concepts and Applications delivers a one-stop resource for readers seeking a complete description of the concepts, models, and applications of metabolic engineering. This guide offers practical insights into the metabolic engineering of major cell lines, including E. Coli, Bacillus and Yarrowia Lipolytica, and organisms, including human, animal, and plant). The distinguished editors also offer readers resources on microbiome engineering and the use of metabolic engineering in bioremediation. Written in two parts, Metabolic Engineering begins with the essential models and strategies of the field, like Flux Balance Analysis, Quantitative Flux Analysis, and Proteome Constrained Models. It also provides an overview of topics like Pathway Design, Metabolomics, and Genome Editing of Bacteria and Eukarya. The second part contains insightful descriptions of the practical applications of metabolic engineering, including specific examples that shed light on the topics within. In addition to subjects like the metabolic engineering of animals, humans, and plants, you’ll learn more about: Metabolic engineering concepts and a historical perspective on their development The different modes of analysis, including flux balance analysis and quantitative flux analysis An illuminating and complete discussion of the thermodynamics of metabolic pathways The Genome architecture of E. coli, as well as genome editing of both bacteria and eukarya An in-depth treatment of the application of metabolic engineering techniques to organisms including corynebacterial, bacillus, and pseudomonas, and more Perfect for students of biotechnology, bioengineers, and biotechnologists, Metabolic Engineering: Concepts and Applications also has a place on the bookshelves of research institutes, biotechnological institutes and industry labs, and university libraries. It's comprehensive treatment of all relevant metabolic engineering concepts, models, and applications will be of use to practicing biotechnologists and bioengineers who wish to solidify their understanding of the field.
Provides a tutorial on the computational tools that use mathematical optimization concepts and representations for the curation, analysis and redesign of metabolic networks Organizes, for the first time, the fundamentals of mathematical optimization in the context of metabolic network analysis Reviews the fundamentals of different classes of optimization problems including LP, MILP, MLP and MINLP Explains the most efficient ways of formulating a biological problem using mathematical optimization Reviews a variety of relevant problems in metabolic network curation, analysis and redesign with an emphasis on details of optimization formulations Provides a detailed treatment of bilevel optimization techniques for computational strain design and other relevant problems
Bioprocessing for Value-Added Products from Renewable Resources provides a timely review of new and unconventional techniques for manufacturing high-value products based on simple biological material. The book discusses the principles underpinning modern industrial biotechnology and describes a unique collection of novel bioprocesses for a sustainable future. This book begins in a very structured way. It first looks at the modern technologies that form the basis for creating a bio-based industry before describing the various organisms that are suitable for bioprocessing - from bacteria to algae - as well as their unique characteristics. This is followed by a discussion of novel, experimental bioprocesses, such as the production of medicinal chemicals, the production of chiral compounds and the design of biofuel cells. The book concludes with examples where biological, renewable resources become an important feedstock for large-scale industrial production. This book is suitable for researchers, practitioners, students, and consultants in the bioprocess and biotechnology fields, and for others who are interested in biotechnology, engineering, industrial microbiology and chemical engineering. ·Reviews the principles underpinning modern industrial biotechnology ·Provides a unique collection of novel bioprocesses for a sustainable future ·Gives examples of economical use of renewable resources as feedstocks ·Suitable for both non-experts and experts in the bioproduct industry
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".
Metabolic engineering is a rapidly evolving field that is being applied for the optimization of many different industrial processes. In this issue of Advances in Biochemical Engineering/Biotechnology, developments in different areas of metabolic engineering are reviewed. The contributions discuss the application of metabolic engineering in the improvement of yield and productivity - illustrated by amino acid production and the production of novel compounds - in the production of polyketides and extension of the substrate range - and in the engineering of S. cerevisiae for xylose metabolism, and the improvement of a complex biotransformation process.
Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.
Textbook for upper-division and graduate students in the biological and biochemical sciences introduces the properties of bacteria that have led to their success as colonizers of this planet. The major theme is the analysis of the molecular devices that have led to the ability of bacteria to grow rapidly in a variety of environments, to adapt quickly to changes in their surroundings, to withstand starvation and exposure to toxic agents, and to compete successfully with other organisms. Annotation copyrighted by Book News, Inc., Portland, OR