Optimization Techniques in Statistics

Optimization Techniques in Statistics

Author: Jagdish S. Rustagi

Publisher: Elsevier

Published: 2014-05-19

Total Pages: 376

ISBN-13: 1483295710

DOWNLOAD EBOOK

Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features numerous applications, including: Finding maximum likelihood estimates, Markov decision processes, Programming methods used to optimize monitoring of patients in hospitals, Derivation of the Neyman-Pearson lemma, The search for optimal designs, Simulation of a steel mill. Suitable as both a reference and a text, this book will be of interest to advanced undergraduate or beginning graduate students in statistics, operations research, management and engineering sciences, and related fields. Most of the material can be covered in one semester by students with a basic background in probability and statistics. - Covers optimization from traditional methods to recent developments such as Karmarkars algorithm and simulated annealing - Develops a wide range of statistical techniques in the unified context of optimization - Discusses applications such as optimizing monitoring of patients and simulating steel mill operations - Treats numerical methods and applications - Includes exercises and references for each chapter - Covers topics such as linear, nonlinear, and dynamic programming, variational methods, and stochastic optimization


Introduction to Optimization Methods and their Application in Statistics

Introduction to Optimization Methods and their Application in Statistics

Author: B. Everitt

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 87

ISBN-13: 9400931530

DOWNLOAD EBOOK

Optimization techniques are used to find the values of a set of parameters which maximize or minimize some objective function of interest. Such methods have become of great importance in statistics for estimation, model fitting, etc. This text attempts to give a brief introduction to optimization methods and their use in several important areas of statistics. It does not pretend to provide either a complete treatment of optimization techniques or a comprehensive review of their application in statistics; such a review would, of course, require a volume several orders of magnitude larger than this since almost every issue of every statistics journal contains one or other paper which involves the application of an optimization method. It is hoped that the text will be useful to students on applied statistics courses and to researchers needing to use optimization techniques in a statistical context. Lastly, my thanks are due to Bertha Lakey for typing the manuscript.


Optimization for Data Analysis

Optimization for Data Analysis

Author: Stephen J. Wright

Publisher: Cambridge University Press

Published: 2022-04-21

Total Pages: 239

ISBN-13: 1316518981

DOWNLOAD EBOOK

A concise text that presents and analyzes the fundamental techniques and methods in optimization that are useful in data science.


Optimization Techniques and Applications with Examples

Optimization Techniques and Applications with Examples

Author: Xin-She Yang

Publisher: John Wiley & Sons

Published: 2018-09-19

Total Pages: 384

ISBN-13: 1119490545

DOWNLOAD EBOOK

A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniques in optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author—a noted expert in the field—covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book’s exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: Offers an accessible and state-of-the-art introduction to the main optimization techniques Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques Presents a balance of theory, algorithms, and implementation Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniques in optimization.


Process Optimization

Process Optimization

Author: Enrique del Castillo

Publisher: Springer Science & Business Media

Published: 2007-09-14

Total Pages: 462

ISBN-13: 0387714359

DOWNLOAD EBOOK

This book covers several bases at once. It is useful as a textbook for a second course in experimental optimization techniques for industrial production processes. In addition, it is a superb reference volume for use by professors and graduate students in Industrial Engineering and Statistics departments. It will also be of huge interest to applied statisticians, process engineers, and quality engineers working in the electronics and biotech manufacturing industries. In all, it provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization, and more.


Statistical Inference Via Convex Optimization

Statistical Inference Via Convex Optimization

Author: Anatoli Juditsky

Publisher: Princeton University Press

Published: 2020-04-07

Total Pages: 655

ISBN-13: 0691197296

DOWNLOAD EBOOK

This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.


First-Order Methods in Optimization

First-Order Methods in Optimization

Author: Amir Beck

Publisher: SIAM

Published: 2017-10-02

Total Pages: 476

ISBN-13: 1611974984

DOWNLOAD EBOOK

The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.


Sparse Optimization Theory and Methods

Sparse Optimization Theory and Methods

Author: Yun-Bin Zhao

Publisher: CRC Press

Published: 2018-07-04

Total Pages: 222

ISBN-13: 1351624148

DOWNLOAD EBOOK

Seeking sparse solutions of underdetermined linear systems is required in many areas of engineering and science such as signal and image processing. The efficient sparse representation becomes central in various big or high-dimensional data processing, yielding fruitful theoretical and realistic results in these fields. The mathematical optimization plays a fundamentally important role in the development of these results and acts as the mainstream numerical algorithms for the sparsity-seeking problems arising from big-data processing, compressed sensing, statistical learning, computer vision, and so on. This has attracted the interest of many researchers at the interface of engineering, mathematics and computer science. Sparse Optimization Theory and Methods presents the state of the art in theory and algorithms for signal recovery under the sparsity assumption. The up-to-date uniqueness conditions for the sparsest solution of underdertemined linear systems are described. The results for sparse signal recovery under the matrix property called range space property (RSP) are introduced, which is a deep and mild condition for the sparse signal to be recovered by convex optimization methods. This framework is generalized to 1-bit compressed sensing, leading to a novel sign recovery theory in this area. Two efficient sparsity-seeking algorithms, reweighted l1-minimization in primal space and the algorithm based on complementary slackness property, are presented. The theoretical efficiency of these algorithms is rigorously analysed in this book. Under the RSP assumption, the author also provides a novel and unified stability analysis for several popular optimization methods for sparse signal recovery, including l1-mininization, Dantzig selector and LASSO. This book incorporates recent development and the author’s latest research in the field that have not appeared in other books.


Experimental Methods for the Analysis of Optimization Algorithms

Experimental Methods for the Analysis of Optimization Algorithms

Author: Thomas Bartz-Beielstein

Publisher: Springer Science & Business Media

Published: 2010-11-02

Total Pages: 469

ISBN-13: 3642025382

DOWNLOAD EBOOK

In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.