Optimization for Industrial Problems

Optimization for Industrial Problems

Author: Patrick Bangert

Publisher: Springer Science & Business Media

Published: 2012-01-05

Total Pages: 264

ISBN-13: 3642249744

DOWNLOAD EBOOK

Industrial optimization lies on the crossroads between mathematics, computer science, engineering and management. This book presents these fields in interdependence as a conversation between theoretical aspects of mathematics and computer science and the mathematical field of optimization theory at a practical level. The 19 case studies that were conducted by the author in real enterprises in cooperation and co-authorship with some of the leading industrial enterprises, including RWE, Vattenfall, EDF, PetroChina, Vestolit, Sasol, and Hella, illustrate the results that may be reasonably expected from an optimization project in a commercial enterprise. The book is aimed at persons working in industrial facilities as managers or engineers; it is also suitable for university students and their professors as an illustration of how the academic material may be used in real life. It will not make its reader a mathematician but it will help its reader in improving his plant.


Shape Optimization Problems

Shape Optimization Problems

Author: Hideyuki Azegami

Publisher: Springer Nature

Published: 2020-09-30

Total Pages: 646

ISBN-13: 9811576181

DOWNLOAD EBOOK

This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.


Quasidifferentiability and Related Topics

Quasidifferentiability and Related Topics

Author: Vladimir F. Demyanov

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 401

ISBN-13: 147573137X

DOWNLOAD EBOOK

2 Radiant sets 236 3 Co-radiant sets 239 4 Radiative and co-radiative sets 241 5 Radiant sets with Lipschitz continuous Minkowski gauges 245 6 Star-shaped sets and their kernels 249 7 Separation 251 8 Abstract convex star-shaped sets 255 References 260 11 DIFFERENCES OF CONVEX COMPACTA AND METRIC SPACES OF CON- 263 VEX COMPACTA WITH APPLICATIONS: A SURVEY A. M. Rubinov, A. A. Vladimirov 1 Introduction 264 2 Preliminaries 264 3 Differences of convex compact sets: general approach 266 4 Metric projections and corresponding differences (one-dimensional case) 267 5 The *-difference 269 6 The Demyanov difference 271 7 Geometric and inductive definitions of the D-difference 273 8 Applications to DC and quasidifferentiable functions 276 9 Differences of pairs of set-valued mappings with applications to quasidiff- entiability 278 10 Applications to approximate subdifferentials 280 11 Applications to the approximation of linear set-valued mappings 281 12 The Demyanov metric 282 13 The Bartels-Pallaschke metric 284 14 Hierarchy of the three norms on Qn 285 15 Derivatives 287 16 Distances from convex polyhedra and convergence of convex polyhedra 289 17 Normality of convex sets 290 18 D-regular sets 291 19 Variable D-regular sets 292 20 Optimization 293 References 294 12 CONVEX APPROXIMATORS.


Newton-Type Methods for Optimization and Variational Problems

Newton-Type Methods for Optimization and Variational Problems

Author: Alexey F. Izmailov

Publisher: Springer

Published: 2014-07-08

Total Pages: 587

ISBN-13: 3319042475

DOWNLOAD EBOOK

This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.


Well-Posed Optimization Problems

Well-Posed Optimization Problems

Author: Assen L. Dontchev

Publisher: Springer

Published: 2006-11-15

Total Pages: 432

ISBN-13: 354047644X

DOWNLOAD EBOOK

This book presents in a unified way the mathematical theory of well-posedness in optimization. The basic concepts of well-posedness and the links among them are studied, in particular Hadamard and Tykhonov well-posedness. Abstract optimization problems as well as applications to optimal control, calculus of variations and mathematical programming are considered. Both the pure and applied side of these topics are presented. The main subject is often introduced by heuristics, particular cases and examples. Complete proofs are provided. The expected knowledge of the reader does not extend beyond textbook (real and functional) analysis, some topology and differential equations and basic optimization. References are provided for more advanced topics. The book is addressed to mathematicians interested in optimization and related topics, and also to engineers, control theorists, economists and applied scientists who can find here a mathematical justification of practical procedures they encounter.


Multi-Objective Optimization Problems

Multi-Objective Optimization Problems

Author: Fran Sérgio Lobato

Publisher: Springer

Published: 2017-07-03

Total Pages: 170

ISBN-13: 3319585657

DOWNLOAD EBOOK

This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.


Linear Optimization Problems with Inexact Data

Linear Optimization Problems with Inexact Data

Author: Miroslav Fiedler

Publisher: Springer Science & Business Media

Published: 2006-07-18

Total Pages: 222

ISBN-13: 0387326987

DOWNLOAD EBOOK

Linear programming has attracted the interest of mathematicians since World War II when the first computers were constructed. Early attempts to apply linear programming methods practical problems failed, in part because of the inexactness of the data used to create the models. This book presents a comprehensive treatment of linear optimization with inexact data, summarizing existing results and presenting new ones within a unifying framework.


Perturbation Analysis of Optimization Problems

Perturbation Analysis of Optimization Problems

Author: J.Frederic Bonnans

Publisher: Springer Science & Business Media

Published: 2000-05-11

Total Pages: 626

ISBN-13: 9780387987057

DOWNLOAD EBOOK

A presentation of general results for discussing local optimality and computation of the expansion of value function and approximate solution of optimization problems, followed by their application to various fields, from physics to economics. The book is thus an opportunity for popularizing these techniques among researchers involved in other sciences, including users of optimization in a wide sense, in mechanics, physics, statistics, finance and economics. Of use to research professionals, including graduate students at an advanced level.


Handbook of Test Problems in Local and Global Optimization

Handbook of Test Problems in Local and Global Optimization

Author: Christodoulos A. Floudas

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 447

ISBN-13: 1475730403

DOWNLOAD EBOOK

This collection of challenging and well-designed test problems arising in literature studies also contains a wide spectrum of applications, including pooling/blending operations, heat exchanger network synthesis, homogeneous azeotropic separation, and dynamic optimization and optimal control problems.


Inverse Problems and Related Topics

Inverse Problems and Related Topics

Author: Jin Cheng

Publisher: Springer Nature

Published: 2020-02-04

Total Pages: 310

ISBN-13: 9811515921

DOWNLOAD EBOOK

This volume contains 13 chapters, which are extended versions of the presentations at International Conference on Inverse Problems at Fudan University, Shanghai, China, October 12-14, 2018, in honor of Masahiro Yamamoto on the occasion of his 60th anniversary. The chapters are authored by world-renowned researchers and rising young talents, and are updated accounts of various aspects of the researches on inverse problems. The volume covers theories of inverse problems for partial differential equations, regularization methods, and related topics from control theory. This book addresses a wide audience of researchers and young post-docs and graduate students who are interested in mathematical sciences as well as mathematics.