Broad-spectrum approach to important topic. Explores the classic theory of minima and maxima, classical calculus of variations, simplex technique and linear programming, optimality and dynamic programming, more. 1969 edition.
A collection of 28 refereed papers grouped according to four broad topics: duality and optimality conditions, optimization algorithms, optimal control, and variational inequality and equilibrium problems. Suitable for researchers, practitioners and postgrads.
This text presents a multi-disciplined view of optimization, providing students and researchers with a thorough examination of algorithms, methods, and tools from diverse areas of optimization without introducing excessive theoretical detail. This second edition includes additional topics, including global optimization and a real-world case study using important concepts from each chapter. Introduction to Applied Optimization is intended for advanced undergraduate and graduate students and will benefit scientists from diverse areas, including engineers.
Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and co
This self-contained textbook is an informal introduction to optimization through the use of numerous illustrations and applications. The focus is on analytically solving optimization problems with a finite number of continuous variables. In addition, the authors provide introductions to classical and modern numerical methods of optimization and to dynamic optimization. The book's overarching point is that most problems may be solved by the direct application of the theorems of Fermat, Lagrange, and Weierstrass. The authors show how the intuition for each of the theoretical results can be supported by simple geometric figures. They include numerous applications through the use of varied classical and practical problems. Even experts may find some of these applications truly surprising. A basic mathematical knowledge is sufficient to understand the topics covered in this book. More advanced readers, even experts, will be surprised to see how all main results can be grounded on the Fermat-Lagrange theorem. The book can be used for courses on continuous optimization, from introductory to advanced, for any field for which optimization is relevant.
A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniques in optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author—a noted expert in the field—covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book’s exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: Offers an accessible and state-of-the-art introduction to the main optimization techniques Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques Presents a balance of theory, algorithms, and implementation Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniques in optimization.
This book deals with decision making in environments of significant data un certainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness ap proach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: • It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; • It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; • It accounts for the risk averse nature of decision makers; and • It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of opera tional decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making.
This book has grown out of lectures and courses in calculus of variations and optimization taught for many years at the University of Michigan to graduate students at various stages of their careers, and always to a mixed audience of students in mathematics and engineering. It attempts to present a balanced view of the subject, giving some emphasis to its connections with the classical theory and to a number of those problems of economics and engineering which have motivated so many of the present developments, as well as presenting aspects of the current theory, particularly value theory and existence theorems. However, the presentation ofthe theory is connected to and accompanied by many concrete problems of optimization, classical and modern, some more technical and some less so, some discussed in detail and some only sketched or proposed as exercises. No single part of the subject (such as the existence theorems, or the more traditional approach based on necessary conditions and on sufficient conditions, or the more recent one based on value function theory) can give a sufficient representation of the whole subject. This holds particularly for the existence theorems, some of which have been conceived to apply to certain large classes of problems of optimization. For all these reasons it is essential to present many examples (Chapters 3 and 6) before the existence theorems (Chapters 9 and 11-16), and to investigate these examples by means of the usual necessary conditions, sufficient conditions, and value function theory.
Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.
A thorough and highly accessible resource for analysts in a broadrange of social sciences. Optimization: Foundations and Applications presents a series ofapproaches to the challenges faced by analysts who must find thebest way to accomplish particular objectives, usually with theadded complication of constraints on the available choices.Award-winning educator Ronald E. Miller provides detailed coverageof both classical, calculus-based approaches and newer,computer-based iterative methods. Dr. Miller lays a solid foundation for both linear and nonlinearmodels and quickly moves on to discuss applications, includingiterative methods for root-finding and for unconstrainedmaximization, approaches to the inequality constrained linearprogramming problem, and the complexities of inequality constrainedmaximization and minimization in nonlinear problems. Otherimportant features include: More than 200 geometric interpretations of algebraic results,emphasizing the intuitive appeal of mathematics Classic results mixed with modern numerical methods to aidusers of computer programs Extensive appendices containing mathematical details importantfor a thorough understanding of the topic With special emphasis on questions most frequently asked by thoseencountering this material for the first time, Optimization:Foundations and Applications is an extremely useful resource forprofessionals in such areas as mathematics, engineering, economicsand business, regional science, geography, sociology, politicalscience, management and decision sciences, public policy analysis,and numerous other social sciences. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available upon request from the Wileyeditorial department.