Optimal Measurement Methods for Distributed Parameter System Identification

Optimal Measurement Methods for Distributed Parameter System Identification

Author: Dariusz Ucinski

Publisher: CRC Press

Published: 2004-08-27

Total Pages: 392

ISBN-13: 0203026780

DOWNLOAD EBOOK

For dynamic distributed systems modeled by partial differential equations, existing methods of sensor location in parameter estimation experiments are either limited to one-dimensional spatial domains or require large investments in software systems. With the expense of scanning and moving sensors, optimal placement presents a critical problem.


Distributed Parameter Systems

Distributed Parameter Systems

Author: S. Ōmatu

Publisher: Oxford University Press, USA

Published: 1989

Total Pages: 456

ISBN-13:

DOWNLOAD EBOOK

In this unified account of the mathematical theory of distributed parameter systems (DPS), the authors cover all major aspects of the control, estimation, and identification of such systems, and their application in engineering problems. The first part of the book is devoted to the basic results in deterministic and stochastic partial differential equations, which are applied to the optimal control and estimation theories for DPS. Part two then applies this knowledge in an engineering setting, discussing optimal estimators, optimal sensor and actuator locations, and computational techniques.


Research Directions in Distributed Parameter Systems

Research Directions in Distributed Parameter Systems

Author: Ralph C. Smith

Publisher: SIAM

Published: 2003-01-01

Total Pages: 290

ISBN-13: 9780898717525

DOWNLOAD EBOOK

Written by the plenary speakers for the Conference on Future Directions in Distributed Parameter Systems (October 2000), the volume addresses the state of the art, open questions, and important research directions in applications modeled by partial differential equations and delay systems. Topics include electromagnetic theory for dielectric and conductive materials, flow control, cardiovascular and respiratory models, homogenization and systems theory, optimal and geometric control, reduced-order models for large-scale systems, smart materials, and nondestructive evaluation and structural health monitoring for systems, including nuclear power plants.