Real-time PDE-constrained Optimization

Real-time PDE-constrained Optimization

Author: Lorenz T. Biegler

Publisher: SIAM

Published: 2007-01-01

Total Pages: 335

ISBN-13: 9780898718935

DOWNLOAD EBOOK

Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.


Variational Methods

Variational Methods

Author: Maïtine Bergounioux

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-01-11

Total Pages: 540

ISBN-13: 3110430398

DOWNLOAD EBOOK

With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control. Contents: Part I Second-order decomposition model for image processing: numerical experimentation Optimizing spatial and tonal data for PDE-based inpainting Image registration using phase・amplitude separation Rotation invariance in exemplar-based image inpainting Convective regularization for optical flow A variational method for quantitative photoacoustic tomography with piecewise constant coefficients On optical flow models for variational motion estimation Bilevel approaches for learning of variational imaging models Part II Non-degenerate forms of the generalized Euler・Lagrange condition for state-constrained optimal control problems The Purcell three-link swimmer: some geometric and numerical aspects related to periodic optimal controls Controllability of Keplerian motion with low-thrust control systems Higher variational equation techniques for the integrability of homogeneous potentials Introduction to KAM theory with a view to celestial mechanics Invariants of contact sub-pseudo-Riemannian structures and Einstein・Weyl geometry Time-optimal control for a perturbed Brockett integrator Twist maps and Arnold diffusion for diffeomorphisms A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I Index


Foundations of Optimum Experimental Design

Foundations of Optimum Experimental Design

Author: Andrej Pázman

Publisher: Springer

Published: 1986-01-31

Total Pages: 256

ISBN-13:

DOWNLOAD EBOOK

Introductory remarks about the experiment and its disign. The regression model and methods of estimation. The ordering of designs and the properties of variaces of estimates. Optimality critaria in the regression model. Iterative computation of optimum desings Design of experiments in particular cases. The functional model and measurements of physical fields.


Large-Scale Inverse Problems and Quantification of Uncertainty

Large-Scale Inverse Problems and Quantification of Uncertainty

Author: Lorenz Biegler

Publisher: John Wiley & Sons

Published: 2011-06-24

Total Pages: 403

ISBN-13: 1119957583

DOWNLOAD EBOOK

This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.


Engineering Design Optimization

Engineering Design Optimization

Author: Joaquim R. R. A. Martins

Publisher: Cambridge University Press

Published: 2021-11-18

Total Pages: 653

ISBN-13: 110898861X

DOWNLOAD EBOOK

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.


Topology Optimization

Topology Optimization

Author: Martin Philip Bendsoe

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 381

ISBN-13: 3662050862

DOWNLOAD EBOOK

The topology optimization method solves the basic enginee- ring problem of distributing a limited amount of material in a design space. The first edition of this book has become the standard text on optimal design which is concerned with the optimization of structural topology, shape and material. This edition, has been substantially revised and updated to reflect progress made in modelling and computational procedures. It also encompasses a comprehensive and unified description of the state-of-the-art of the so-called material distribution method, based on the use of mathematical programming and finite elements. Applications treated include not only structures but also materials and MEMS.


Optimal Measurement Methods for Distributed Parameter System Identification

Optimal Measurement Methods for Distributed Parameter System Identification

Author: Dariusz Ucinski

Publisher: CRC Press

Published: 2004-08-27

Total Pages: 390

ISBN-13: 0203026780

DOWNLOAD EBOOK

For dynamic distributed systems modeled by partial differential equations, existing methods of sensor location in parameter estimation experiments are either limited to one-dimensional spatial domains or require large investments in software systems. With the expense of scanning and moving sensors, optimal placement presents a critical problem.