Optimal Flow Control in Manufacturing Systems

Optimal Flow Control in Manufacturing Systems

Author: O. Maimon

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 354

ISBN-13: 1475728344

DOWNLOAD EBOOK

This book presents a unified optimal control approach to a large class of problems arising in the field of production planning and scheduling. It introduces a leading optimal flow control paradigm which results in efficient solutions for planning and scheduling problems. This book also introduces the reader to analytical and numerical methods of the maximum principle, used here as a mathematical instrument in modeling and solving production planning and scheduling problems. The book examines control of production flows rather than sequencing of distinct jobs. Methodologically, this paradigm allows us to progress from initial assumptions about a manufacturing environment, through mathematical models and construction of numerical methods, up to practical applications which prove the relevance of the theory developed here to the real world. Given a manufacturing system, the goal is to control the production, subject to given constraints, in such a way that the demands are tracked as closely as possible. The book considers a wide variety of problems encountered in actual production planning and scheduling. Among the problems are production flow sequencing and timing, capacity expansion and deterioration, subcontracting and overtime. The last chapter is entirely devoted to applications of the theory to scheduling production flows in real-life manufacturing systems. The enclosed disk provides software implementations of the developed methods with easy, convenient user interface. We aimed this book at a student audience - final year undergraduates as weIl as master and Ph. D.


Optimal Flow Control in Manufacturing Systems

Optimal Flow Control in Manufacturing Systems

Author: O. Maimon

Publisher: Springer

Published: 2013-01-17

Total Pages: 348

ISBN-13: 9781475728354

DOWNLOAD EBOOK

This book presents a unified optimal control approach to a large class of problems arising in the field of production planning and scheduling. It introduces a leading optimal flow control paradigm which results in efficient solutions for planning and scheduling problems. This book also introduces the reader to analytical and numerical methods of the maximum principle, used here as a mathematical instrument in modeling and solving production planning and scheduling problems. The book examines control of production flows rather than sequencing of distinct jobs. Methodologically, this paradigm allows us to progress from initial assumptions about a manufacturing environment, through mathematical models and construction of numerical methods, up to practical applications which prove the relevance of the theory developed here to the real world. Given a manufacturing system, the goal is to control the production, subject to given constraints, in such a way that the demands are tracked as closely as possible. The book considers a wide variety of problems encountered in actual production planning and scheduling. Among the problems are production flow sequencing and timing, capacity expansion and deterioration, subcontracting and overtime. The last chapter is entirely devoted to applications of the theory to scheduling production flows in real-life manufacturing systems. The enclosed disk provides software implementations of the developed methods with easy, convenient user interface. We aimed this book at a student audience - final year undergraduates as weIl as master and Ph. D.


Control and Dynamic Systems V48: Manufacturing and Automation Systems: Techniques and Technologies

Control and Dynamic Systems V48: Manufacturing and Automation Systems: Techniques and Technologies

Author: C.T. Leonides

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 462

ISBN-13: 0323162991

DOWNLOAD EBOOK

Control and Dynamic Systems: Advances in Theory and Applications, Volume 48: Manufacturing and Automation Systems: Techniques and Technologies, Part 4 of 5 deals with techniques and technologies in manufacturing and automation systems. This book begins by discussing the advances of techniques for measuring the effectiveness of investments in automation and manufacturing systems. It then turns to graphical concurrent modeling language (GCML), a program used to model and analyze discrete manufacturing systems. This book also presents techniques for modeling solids; strategies for design optimization of machine products; design and control of industrial robots; and other optimization methodologies for manufacturing, robotic, and automation systems. This book will provide a uniquely significant reference for those who are interested in manufacturing, robotics, and automation systems.


Algorithms for Scheduling Problems

Algorithms for Scheduling Problems

Author: FrankWerner

Publisher: MDPI

Published: 2018-08-24

Total Pages: 209

ISBN-13: 3038971197

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue " Algorithms for Scheduling Problems" that was published in Algorithms


Stochastic Theory and Control

Stochastic Theory and Control

Author: Bozenna Pasik-Duncan

Publisher: Springer

Published: 2003-07-01

Total Pages: 563

ISBN-13: 3540480226

DOWNLOAD EBOOK

This volume contains almost all of the papers that were presented at the Workshop on Stochastic Theory and Control that was held at the Univ- sity of Kansas, 18–20 October 2001. This three-day event gathered a group of leading scholars in the ?eld of stochastic theory and control to discuss leading-edge topics of stochastic control, which include risk sensitive control, adaptive control, mathematics of ?nance, estimation, identi?cation, optimal control, nonlinear ?ltering, stochastic di?erential equations, stochastic p- tial di?erential equations, and stochastic theory and its applications. The workshop provided an opportunity for many stochastic control researchers to network and discuss cutting-edge technologies and applications, teaching and future directions of stochastic control. Furthermore, the workshop focused on promoting control theory, in particular stochastic control, and it promoted collaborative initiatives in stochastic theory and control and stochastic c- trol education. The lecture on “Adaptation of Real-Time Seizure Detection Algorithm” was videotaped by the PBS. Participants of the workshop have been involved in contributing to the documentary being ?lmed by PBS which highlights the extraordinary work on “Math, Medicine and the Mind: Discovering Tre- ments for Epilepsy” that examines the e?orts of the multidisciplinary team on which several of the participants of the workshop have been working for many years to solve one of the world’s most dramatic neurological conditions. Invited high school teachers of Math and Science were among the part- ipants of this professional meeting.


Maintenance, Modeling and Optimization

Maintenance, Modeling and Optimization

Author: Mohamed Ben-Daya

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 481

ISBN-13: 1461543290

DOWNLOAD EBOOK

Production costs are being reduced by automation, robotics, computer-integrated manufacturing, cost reduction studies and more. These new technologies are expensive to buy, repair, and maintain. Hence, the demand on maintenance is growing and its costs are escalating. This new environment is compelling industrial maintenance organizations to make the transition from fixing broken machines to higher-level business units for securing production capacity. On the academic front, research in the area of maintenance management and engineering is receiving tremendous interest from researchers. Many papers have appeared in the literature dealing with the modeling and solution of maintenance problems using operations research (OR) and management science (MS) techniques. This area represents an opportunity for making significant contributions by the OR and MS communities. Maintenance, Modeling, and Optimization provides in one volume the latest developments in the area of maintenance modeling. Prominent scholars have contributed chapters covering a wide range of topics. We hope that this initial contribution will serve as a useful informative introduction to this field that may permit additional developments and useful directions for more research in this fast-growing area. The book is divided into six parts and contains seventeen chapters. Each chapter has been subject to review by at least two experts in the area of maintenance modeling and optimization. The first chapter provides an introduction to major maintenance modeling areas illustrated with some basic models. Part II contains five chapters dealing with maintenance planning and scheduling. Part III deals with preventive maintenance in six chapters. Part IV focuses on condition-based maintenance and contains two chapters. Part V deals with integrated production and maintenance models and contains two chapters. Part VI addresses issues related to maintenance and new technologies, and also deals with Just-in-Time (JIT) and Maintenance.


Computer control of flexible manufacturing systems

Computer control of flexible manufacturing systems

Author: S. Joshi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 490

ISBN-13: 9401112304

DOWNLOAD EBOOK

With the approach of the 21st century, and the current trends in manufacturing, the role of computer-controlled flexible manufacturing an integral part in the success of manufacturing enterprises. will take Manufacturing environments are changing to small batch (with batch sizes diminishing to a quantity of one), larger product variety, produc tion on demand with low lead times, with the ability to be 'agile.' This is in stark contrast to conventional manufacturing which has relied on economies of scale, and where change is viewed as a disruption and is therefore detrimental to production. Computer integrated manufac turing (CIM) and flexible manufacturing practices are a key component in the transition from conventional manufacturing to the 'new' manu facturing environment. While the use of computers in manufacturing, from controlling indi vidual machines (NC, Robots, AGVs etc.) to controlling flexible manu facturing systems (FMS) has advanced the flexibility of manufacturing environments, it is still far from reaching its full potential in the environment of the future. Great strides have been made in individual technologies and control of FMS has been the subject of considerable research, but computerized shop floor control is not nearly as flexible or integrated as hyped in industrial and academic literature. In fact, the integrated systems have lagged far behind what could be achieved with existing technology.


Optimization Models and Concepts in Production Management

Optimization Models and Concepts in Production Management

Author: Bradimaarte

Publisher: CRC Press

Published: 1995-04-13

Total Pages: 364

ISBN-13: 9782884490207

DOWNLOAD EBOOK

Optimization techniques in production management are becoming increasingly important for efficient and competitive manufacturing. This book presents a collection of tutorial papers by outstanding researchers on the application of optimization concepts. Topics introduced include hierarchical production planning and large scale scheduling, optimal production control, exact and heuristic algorithms for production scheduling and stochastic modelling.


Hierarchical Decision Making in Stochastic Manufacturing Systems

Hierarchical Decision Making in Stochastic Manufacturing Systems

Author: Suresh P. Sethi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 420

ISBN-13: 146120285X

DOWNLOAD EBOOK

One of the most important methods in dealing with the optimization of large, complex systems is that of hierarchical decomposition. The idea is to reduce the overall complex problem into manageable approximate problems or subproblems, to solve these problems, and to construct a solution of the original problem from the solutions of these simpler prob lems. Development of such approaches for large complex systems has been identified as a particularly fruitful area by the Committee on the Next Decade in Operations Research (1988) [42] as well as by the Panel on Future Directions in Control Theory (1988) [65]. Most manufacturing firms are complex systems characterized by sev eral decision subsystems, such as finance, personnel, marketing, and op erations. They may have several plants and warehouses and a wide variety of machines and equipment devoted to producing a large number of different products. Moreover, they are subject to deterministic as well as stochastic discrete events, such as purchasing new equipment, hiring and layoff of personnel, and machine setups, failures, and repairs.