Optimization of Power System Operation, 2nd Edition, offers a practical, hands-on guide to theoretical developments and to the application of advanced optimization methods to realistic electric power engineering problems. The book includes: New chapter on Application of Renewable Energy, and a new chapter on Operation of Smart Grid New topics include wheeling model, multi-area wheeling, and the total transfer capability computation in multiple areas Continues to provide engineers and academics with a complete picture of the optimization of techniques used in modern power system operation
This book presents the application of some AI related optimization techniques in the operation and control of electric power systems. With practical applications and examples the use of functional analysis, simulated annealing, Tabu-search, Genetic algorithms and fuzzy systems for the optimization of power systems is discussed in detail. Preliminary mathematical concepts are presented before moving to more advanced material. Researchers and graduate students will benefit from this book. Engineers working in utility companies, operations and control, and resource management will also find this book useful.
Optimization of Power System Operation, 2nd Edition, offers a practical, hands-on guide to theoretical developments and to the application of advanced optimization methods to realistic electric power engineering problems. The book includes: New chapter on Application of Renewable Energy, and a new chapter on Operation of Smart Grid New topics include wheeling model, multi-area wheeling, and the total transfer capability computation in multiple areas Continues to provide engineers and academics with a complete picture of the optimization of techniques used in modern power system operation
This handbook gathers state-of-the-art research on optimization problems in power distribution systems, covering classical problems as well as the challenges introduced by distributed power generation and smart grid resources. It also presents recent models, solution techniques and computational tools to solve planning problems for power distribution systems and explains how to apply them in distributed and variable energy generation resources. As such, the book therefore is a valuable tool to leverage the expansion and operation planning of electricity distribution networks.
This book presents the application of some AI related optimization techniques in the operation and control of electric power systems. With practical applications and examples the use of functional analysis, simulated annealing, Tabu-search, Genetic algorithms and fuzzy systems for the optimization of power systems is discussed in detail. Preliminary mathematical concepts are presented before moving to more advanced material. Researchers and graduate students will benefit from this book. Engineers working in utility companies, operations and control, and resource management will also find this book useful.
This book offers a broad, in-depth overview that reflects the requirements, possibilities and limits of mathematical optimization and, especially, stochastic optimization in the energy industry.
This book is organized in 2 volumes and 6 parts. Part I is Big Data Analytics, which is about new advances of analysis, statistics, coordination and data mining of big data; Part II is Information Systems Management, which is about the development of big data information system or cloud platform. Part III is Computing Methodology with Big Data, which is about the improvements of traditional computation technologies in the background of big data; Part IV is Uncertainty Decision Making, which is about the decision making methods with various uncertain information, such as fuzzy, random, rough, gray, unascertained. Part V is Intelligence Algorithm. Part VI is Data Security, which is a particularly important aspect in the modern management environment.
Classical and Recent Aspects of Power System Optimization presents conventional and meta-heuristic optimization methods and algorithms for power system studies. The classic aspects of optimization in power systems, such as optimal power flow, economic dispatch, unit commitment and power quality optimization are covered, as are issues relating to distributed generation sizing, allocation problems, scheduling of renewable resources, energy storage, power reserve based problems, efficient use of smart grid capabilities, and protection studies in modern power systems. The book brings together innovative research outcomes, programs, algorithms and approaches that consolidate the present state and future challenges for power. - Analyzes and compares several aspects of optimization for power systems which has never been addressed in one reference - Details real-life industry application examples for each chapter (e.g. energy storage and power reserve problems) - Provides practical training on theoretical developments and application of advanced methods for optimum electrical energy for realistic engineering problems
This book presents new and important research on electric power and its generation, transmission and efficiency. The world is becoming increasingly electrified. For the foreseeable future, coal will continue to be the dominant fuel used for electric power production. The low cost and abundance of coal is one of the primary reasons for this. Electric power transmission, a process in the delivery of electricity to consumers, is the bulk transfer of electrical power. Typically, power transmission is between the power plant and a substation near a populated area. Electricity distribution is the delivery from the substation to the consumers. Due to the large amount of power involved, transmission normally takes place at high voltage (110 kV or above). Electricity is usually transmitted over long distance through overhead power transmission lines. Underground power transmission is used only in densely populated areas due to its high cost of installation and maintenance, and because the high reactive power gain produces large charging currents and difficulties in voltage management. A power transmission system is sometimes referred to colloquially as a "grid"; however, for reasons of economy, the network is rarely a true grid. Redundant paths and lines are provided so that power can be routed from any power plant to any load centre, through a variety of routes, based on the economics of the transmission path and the cost of power. Much analysis is done by transmission companies to determine the maximum reliable capacity of each line, which, due to system stability considerations, may be less than the physical or thermal limit of the line. Deregulation of electricity companies in many countries has led to renewed interest in reliable economic design of transmission networks.