Scientific and Technical Aerospace Reports
Author:
Publisher:
Published: 1989
Total Pages: 984
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 1989
Total Pages: 984
ISBN-13:
DOWNLOAD EBOOKAuthor: Alexander Nebylov
Publisher: Elsevier
Published: 2005-10-03
Total Pages: 776
ISBN-13: 9780080440132
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 1972
Total Pages: 520
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 1998
Total Pages: 980
ISBN-13:
DOWNLOAD EBOOKAuthor: Yazdan Bavafa-Toosi
Publisher: Academic Press
Published: 2017-09-19
Total Pages: 1135
ISBN-13: 012812749X
DOWNLOAD EBOOKIntroduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.
Author: Xinwei Wang
Publisher: Springer Nature
Published: 2020-10-16
Total Pages: 178
ISBN-13: 9811534381
DOWNLOAD EBOOKThe book focuses on symplectic pseudospectral methods for nonlinear optimal control problems and their applications. Both the fundamental principles and engineering practice are addressed. Symplectic pseudospectral methods for nonlinear optimal control problems with complicated factors (i.e., inequality constraints, state-delay, unspecific terminal time, etc.) are solved under the framework of indirect methods. The methods developed here offer a high degree of computational efficiency and accuracy when compared with popular direct pseudospectral methods. The methods are applied to solve optimal control problems arising in various engineering fields, particularly in path planning problems for autonomous vehicles. Given its scope, the book will benefit researchers, engineers and graduate students in the fields of automatic control, path planning, ordinary differential equations, etc.
Author: Vladimir Borisovich Kolmanovskiĭ
Publisher: American Mathematical Soc.
Published: 1996-01-01
Total Pages: 354
ISBN-13: 9780821889572
DOWNLOAD EBOOKDeterministic and stochastic control systems with aftereffect are considered. Necessary and sufficient conditions for the optimality of such systems are obtained. Various methods for the construction of exact and approximate solutions of optimal control problems are suggested. Problems of adaptive control for systems with aftereffect are analyzed. Numerous applications are described. The book can be used by researchers, engineers, and graduate students working in optimal control theory and various applications.
Author: Robert C. Nelson
Publisher:
Published: 1998
Total Pages: 464
ISBN-13:
DOWNLOAD EBOOKThis edition of this this flight stability and controls guide features an unintimidating math level, full coverage of terminology, and expanded discussions of classical to modern control theory and autopilot designs. Extensive examples, problems, and historical notes, make this concise book a vital addition to the engineer's library.
Author: Elimhan N Mahmudov
Publisher: Elsevier
Published: 2011-08-25
Total Pages: 396
ISBN-13: 0123884330
DOWNLOAD EBOOKOptimal control theory has numerous applications in both science and engineering. This book presents basic concepts and principles of mathematical programming in terms of set-valued analysis and develops a comprehensive optimality theory of problems described by ordinary and partial differential inclusions. - In addition to including well-recognized results of variational analysis and optimization, the book includes a number of new and important ones - Includes practical examples
Author:
Publisher:
Published: 1991
Total Pages: 472
ISBN-13:
DOWNLOAD EBOOK