In regenerative medicine, tissue engineers largely rely on destructive and time-consuming techniques that do not allow in situ and spatial monitoring of tissue growth. Furthermore, once the therapy is implanted in the patient, clinicians are often unable to monitor what is happening in the body. To tackle these barriers, optical techniques have bee
Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. - Key for all researchers and instituions in Stem Cell Biology, Bioengineering, and Developmental Biology - The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine - New discoveries from leading researchers on restoration of diseased tissues and organs
This volume presents the current state of laser-assisted bioprinting, a cutting edge tissue engineering technology. Nineteen chapters discuss the most recent developments in using this technology for engineering different types of tissue. Beginning with an overview, the discussion covers bioprinting in cell viability and pattern viability, tissue microfabrication to study cell proliferation, microenvironment for controlling stem cell fate, cell differentiation, zigzag cellular tubes, cartilage tissue engineering, osteogenesis, vessel substitutes, skin tissue and much more. Because bioprinting is on its way to becoming a dominant technology in tissue-engineering, Bioprinting in Regenerative Medicine is essential reading for those researching or working in regenerative medicine, tissue engineering or translational research. Those studying or working with stem cells who are interested in the development of the field will also find the information invaluable.
This book provides a review of imaging techniques and applications in stem cell transplantation and other cell-based therapies. The basis of different molecular imaging techniques is explained in detail, as is the current state of interventional radiology techniques. While the whole is a comprehensive discussion, each chapter is self-sufficient enough so that each can be reviewed independently. The contributors represent years of international and cross-disciplinary expertise and perspective and are all well known in their fields. comprehensive information on the role of clinical and molecular imaging in stem cell therapy from this book reviewed in detail. Essential reading for radiologists and physicians who are interested in developing a basic understanding of stem cell imaging and applications of stem cells and cell based therapies. However, it will also be of interest to clinical scientists and researchers alike, including those involved in stem cell labeling, tracking & imaging, cancer therapy, angiogenesis and cardiac regeneration.
Principles of Regenerative Medicine, Third Edition, details the technologies and advances applied in recent years to strategies for healing and generating tissue. Contributions from a stellar cast of researchers cover the biological and molecular basis of regenerative medicine, highlighting stem cells, wound healing and cell and tissue development. Advances in cell and tissue therapy, including replacement of tissues and organs damaged by disease and previously untreatable conditions, such as diabetes, heart disease, liver disease and renal failure are also incorporated to provide a view to the future and framework for additional studies. - Comprehensively covers the interdisciplinary field of regenerative medicine with contributions from leaders in tissue engineering, cell and developmental biology, biomaterials sciences, nanotechnology, physics, chemistry, bioengineering and surgery - Includes new chapters devoted to iPS cells and other alternative sources for generating stem cells as written by the scientists who made the breakthroughs - Edited by a world-renowned team to present a complete story of the development and promise of regenerative medicine
This book brings together the latest updates from various subareas of biomedical engineering, providing readers with a broad overview of the current state of the art and the technological trends to be refined in the coming years with the goal of improving human health. It shows the important advances in each subfield, rehabilitation technology, computational systems applied to health, and medical devices, with practical examples. It includes topics not covered in other books in the area, such as digital health, bioprinting, organs-on-a-chip, the open data paradigm, and electrical impedance tomography. It is a short and easy-to-read book, and provides bibliographic references for the reader to go deeper into their areas of interest. This book is aimed at a very broad group of professionals and students in biomedical engineering and related areas, seeking to contextualize and understand the latest scientific advances in each subfield of biomedical engineering, including neuroengineering, regenerative medicine, additive manufacturing orthosis, postural analysis of Parkinson's patients, modelling and simulation using biomechanical open data, regenerative medicine, advanced drug delivery systems, bioprinting, biophotonic and electrical impedance tomography.
Nanotechnologies in Preventative and Regenerative Medicine demonstrates how control at the nanoscale can help achieve earlier diagnoses and create more effective treatments. Chapters take a logical approach, arranging materials by their area of application. Biomaterials are, by convention, divided according to the area of their application, with each chapter outlining current challenges before discussing how nanotechnology and nanomaterials can help solve these challenges This applications-orientated book is a valuable resource for researchers in biomedical science who want to gain a greater understanding on how nanotechnology can help create more effective vaccines and treatments, and to nanomaterials researchers seeking to gain a greater understanding of how these materials are applied in medicine. - Demonstrates how nanotechnology can help achieve more successful diagnoses at an earlier stage - Explains how nanomaterials can be manipulated to create more effective drug treatments - Offers suggestions on how the use of nanotechnology might have future applications to create even more effective treatments
Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.
Over the past decade, significant advances in the fields of stem cell biology, bioengineering, and animal models have converged on the discipline of regenerative medicine. Significant progress has been made leading from pre-clinical studies through phase 3 clinical trials for some therapies. This volume provides a state-of-the-art report on tissue engineering toward the goals of tissue and organ restoration and regeneration. Examples from different organ systems illustrate progress with growth factors to assist in tissue remodeling; the capacity of stem cells for restoring damaged tissues; novel synthetic biomaterials to facilitate cell therapy; transplantable tissue patches that preserve three-dimensional structure; synthetic organs generated in culture; aspects of the immune response to transplanted cells and materials; and suitable animal models for non-human clinical trials. The chapters of this book are organized into six sections: Stem Cells, Biomaterials and the Extracellular Environment, Engineered Tissue, Synthetic Organs, Immune Response, and Animal Models. Each section is intended to build upon information presented in the previous chapters, and set the stage for subsequent sections. Throughout the chapters, the reader will observe a common theme of basic discovery informing clinical translation, and clinical studies in animals and humans guiding subsequent experiments at the bench.