Non-langevin Recombination in Fullerene and Non-fullerene Acceptor Solar Cells

Non-langevin Recombination in Fullerene and Non-fullerene Acceptor Solar Cells

Author: Seyed Mehrdad Hosseini

Publisher:

Published: 2022*

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Organic solar cells (OSCs), in recent years, have shown high efficiencies through the development of novel non-fullerene acceptors (NFAs). Fullerene derivatives have been the centerpiece of the accepting materials used throughout organic photovoltaic (OPV) research. However, since 2015 novel NFAs have been a game-changer and have overtaken fullerenes. However, the current understanding of the properties of NFAs for OPV is still relatively limited and critical mechanisms defining the performance of OPVs are still topics of debate. In this thesis, attention is paid to understanding reduced-Langevin recombination with respect to the device physics properties of fullerene and non-fullerene systems. The work is comprised of four closely linked studies. The first is a detailed exploration of the fill factor (FF) expressed in terms of transport and recombination properties in a comparison of fullerene and non-fullerene acceptors. We investigated the key reason behind the reduced FF in the NFA (ITIC-based) devices which is faster non-geminate recombination relative to the fullerene (PCBM[70]-based) devices. [...].


Emerging Photovoltaic Technologies

Emerging Photovoltaic Technologies

Author: Carlito S. Ponseca

Publisher: CRC Press

Published: 2019-12-19

Total Pages: 242

ISBN-13: 1000021769

DOWNLOAD EBOOK

The need to address the energy problem and formulate a lasting solution to tame climate change has never been so urgent. The rise of various renewable energy sources, such as solar cell technologies, has given humanity a glimpse of hope that can delay the catastrophic effects of these problems after decades of neglect. This review volume provides in-depth discussion of the fundamental photophysical processes as well as the state-of-the-art device engineering of various emerging photovoltaic technologies, including organic (fullerene, non-fullerene, and ternary), dye-sensitized (ruthenium, iron, and quantum dot), and hybrid metal-halide perovskite solar cells. The book is essential reading for graduate and postgraduate students involved in the photophysics and materials science of solar cell technologies.


Charge-transfer and Other Excitonic State in Conjugated Polymer

Charge-transfer and Other Excitonic State in Conjugated Polymer

Author: Dhanashree Moghe

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Over the last few decades there has been tremendous progress in organic photovoltaics (OPVs), with efficiencies reaching over 10%. Still, many factors including the origin and the dynamics of charge carrier involved are debatable. New and sensitive techniques are constantly being devised to identify the origin of free charges. At the same time, a lot of research has also been devoted to synthesize low bandgap material such that its absorption spectra overlap with that of the solar spectrum. The most important hindrance in organic semiconductors is the formation of bound electron-hole (exciton) charge pair upon photoexcitation. Additional energy is required to dissociate the bound pair to generate free charges for photovoltaic application. The most popular and efficient way to dissociate excitons is to fabricate a bulk heterojunction solar cell, which comprises of a blend of at least two polymers: one donor and the other acceptor. It is very well established that the presence of fullerene (acceptor) helps in transfer of the negative charges from the donor polymer to fullerene, making the exciton slightly less bound. The nanometer scale islands further help in migration of charges. A crucial aspect of our studies has been evaluating the role of various excitonic states such as charge-transfer and triplet excitonic states in device efficiencies. The focus of this work was on diketopyrrolopyrrole (DPP)- based donor-acceptor (D-A) type conjugated copolymers which have low bandgap energies and have been known to show high efficiency in organic photovoltaics. These copolymers have D-A unit present in the same chain, which lowers the optical bandgap of the material. Variation of either the donor or the acceptor fraction offers an option to tune the optical bandgap by using the same D-A chromophores. The D-A configuration also results in the separation of positive and negative charges within the same polymeric chain, which is the intramolecular charge-transfer excitonic state. We analyze the intramolecular charge-transfer state using bias dependent absorption studies, which allowed us to estimate the binding energy of intramolecular exciton. Later, we performed density functional theory (DFT) and time dependent DFT calculations to identify the origin of the intramolecular exciton absorption. Taking the copolymers as donor (and fullerene as acceptor) in an organic photovoltaic device, we probe the (intermolecular) charge-transfer states formed at the copolymer/fullerene interface . We utilize monochromatic photocurrent method and a highly sensitive (and fast) Fourier transform photocurrent spectroscopy technique to probe the intermolecular charge-transfer states in the device. Our analyses show that the optical bandgap difference between the copolymers and fullerene plays a pivotal role in stabilization /destabilization of charge - transfer states in copolymer-fullerene systems. The triplet excitons are also known to play an important role in OPV efficiency. We probe the diffusion length of triplet exciton in ladder-type polymers by devising a simple, yet efficient method using optical modulation spectroscopy (photoinduced absorption spectroscopy). The diffusion length of triplet excitons is estimated to be almost three orders of magnitude more than the singlet excitons . Further, by implementing a 1D random-walk model to the photoinduced absorption data, we estimate diffusivities of the triplet exciton in our sample.


Synthesis and Characterisation of Non-Fullerene Electron Acceptors for Organic Photovoltaics

Synthesis and Characterisation of Non-Fullerene Electron Acceptors for Organic Photovoltaics

Author: Sarah Holliday

Publisher: Springer

Published: 2018-04-04

Total Pages: 0

ISBN-13: 9783319770901

DOWNLOAD EBOOK

This book reports on the design, synthesis and characterization of new small molecule electron acceptors for polymer solar cells. Starting with a detailed introduction to the science behind polymer solar cells, the author then goes on to review the challenges and advances made in developing non-fullerene acceptors so far. In the main body of the book, the author describes the design principles and synthetic strategy for a new family of acceptors, including detailed synthetic procedures and molecular modeling data used to predict physical properties. An indepth characterization of the photovoltaic performance, with transient absorption spectroscopy (TAS), photo-induced charge extraction, and grazing incidence X-ray diffraction (GIXRD) is also included, and the author uses this data to relate material properties and device performance. This book provides a useful overview for researchers beginning a project in this or related areas.


Organic Solar Cells

Organic Solar Cells

Author: Wallace C.H. Choy

Publisher: Springer Science & Business Media

Published: 2012-11-19

Total Pages: 268

ISBN-13: 1447148231

DOWNLOAD EBOOK

Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.


Materials for Sustainable Energy

Materials for Sustainable Energy

Author: Vincent Dusastre

Publisher: World Scientific

Published: 2011

Total Pages: 360

ISBN-13: 9814317640

DOWNLOAD EBOOK

The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.


Nanostructured Zinc Oxide

Nanostructured Zinc Oxide

Author: Kamlendra Awasthi

Publisher: Elsevier

Published: 2021-08-10

Total Pages: 781

ISBN-13: 0128189010

DOWNLOAD EBOOK

Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors


Solution-Processable Components for Organic Electronic Devices

Solution-Processable Components for Organic Electronic Devices

Author: Beata Luszczynska

Publisher: John Wiley & Sons

Published: 2019-09-16

Total Pages: 686

ISBN-13: 352734442X

DOWNLOAD EBOOK

Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.