Optical Spectroscopy: Fundamentals And Advanced Applications

Optical Spectroscopy: Fundamentals And Advanced Applications

Author: Emil Roduner

Publisher: World Scientific

Published: 2018-12-27

Total Pages: 267

ISBN-13: 1786346125

DOWNLOAD EBOOK

Developments in optical spectroscopy have taken new directions in recent decades, with the focus shifting from understanding small gas phase molecules towards applications in materials and biological systems. This is due to significant interest in these topics, which has been facilitated by significant technological developments.Absorption, luminescence and excited state energy transfer properties have become of crucial importance on a large scale in materials related to light-harvesting in organic and inorganic third generation solar cells, for solar water splitting, and in light emitting diodes, TV screens and many other applications. In addition, Förster resonance energy transfer can be used as a ruler for the characterisation of the structure and dynamics of DNA, proteins and other biomolecules via labelling with fluorescing markers.This advanced textbook covers a range of these applications as well as the basics of absorption, emission and energy transfer of molecular systems in the condensed phase, in addition to the corresponding behaviour of metal nanoparticles and semiconductor quantum dots. Technical experimental requirements, aspects to avoid interfering perturbations and methods of quantitative data analysis make this book accessible and ideal for students and researchers in physical chemistry, biophysics and nanomaterials.


Fundamentals of Dispersive Optical Spectroscopy Systems

Fundamentals of Dispersive Optical Spectroscopy Systems

Author: Wilfried Neumann

Publisher: SPIE-International Society for Optical Engineering

Published: 2014-01-01

Total Pages: 279

ISBN-13: 9780819498243

DOWNLOAD EBOOK

Bridging the gap between basic theoretical texts and specific system recommendations, Fundamentals of Dispersive Optical Spectroscopy Systems addresses the definition, design, justification, and verification of instrumentation for optical spectroscopy, with an emphasis on the application and realization of the technology. The optical spectroscopy solutions discussed within use dispersive spectrometers that primarily involve diffraction gratings. Topics include dispersive elements, detectors, illumination, calibration, and stray light. This book is suitable for students and for professionals looking for a comprehensive text that compares theoretical designs and physical reality during installation.


Chiroptical Spectroscopy

Chiroptical Spectroscopy

Author: Prasad L. Polavarapu

Publisher: CRC Press

Published: 2016-10-03

Total Pages: 298

ISBN-13: 1315357194

DOWNLOAD EBOOK

This book details chiroptical spectroscopic methods: electronic circular dichroism (ECD), optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and vibrational Raman optical activity (VROA). For each technique, the text presents experimental methods for measurements and theoretical methods for analyzing the experimental data. It also includes a set of experiments that can be adopted for undergraduate teaching laboratories. Each chapter is written in an easy-to-follow format for novice readers, with necessary theoretical formalism in appendices for advanced readers.


An Introduction to the Optical Spectroscopy of Inorganic Solids

An Introduction to the Optical Spectroscopy of Inorganic Solids

Author: Jose Solé

Publisher: John Wiley & Sons

Published: 2005-06-10

Total Pages: 304

ISBN-13: 0470868872

DOWNLOAD EBOOK

This practical guide to spectroscopy and inorganic materials meets the demand from academia and the science community for an introductory text that introduces the different optical spectroscopic techniques, used in many laboratories, for material characterisation. Treats the most basic aspects to be introduced into the field of optical spectroscopy of inorganic materials, enabling a student to interpret simple optical (absorption, reflectivity, emission and scattering) spectra Contains simple, illustrative examples and solved exercises Covers the theory, instrumentation and applications of spectroscopy for the characterisation of inorganic materials, including lasers, phosphors and optical materials such as photonics This is an ideal beginner’s guide for students with some previous knowledge in quantum mechanics and optics, as well as a reference source for professionals or researchers in materials science, especially the growing field of optical materials.


Principles of Nonlinear Optical Spectroscopy

Principles of Nonlinear Optical Spectroscopy

Author: Shaul Mukamel

Publisher: Oxford University Press on Demand

Published: 1999

Total Pages: 543

ISBN-13: 9780195132915

DOWNLOAD EBOOK

This textbook presents a systematic and unifying viewpoint for a wide class of nonlinear spectroscopic techniques in time domain and frequency domain. It is directed towards active researchers in physics, optics, chemistry, and materials science, as well as graduate students who enter this complex and rapidly developing field. Nonlinear optical interactions of laser fields with matter provide powerful spectroscopic tools for the understanding of microscopic interactions and dynamic processes. One of the major obstacles facing researchers in this field, however, is the flood of experimental techniques and terminologies, which create a serious language barrier. The general microscopic correlation function approach to the nonlinear optical response developed in this book is essential for understanding the relationships among different techniques and a comparison of their information content, the design of new measurements, and for a systematic comparison of the optical response of different systems such as dyes in solutions, atoms and molecules in the gas phase, liquids, molecular aggregates and superlatives, and semiconductor nanostructures. The approach is based on formulating the nonlinear response by representing the state of matter by the density matrix and following its evolution on Liouville space. Current active research areas such as femtosecond time-domain techniques, semi-classical and wave-packet dynamics, pulse shaping, pulse locking, exciton confinement, and the interplay of electronic, nuclear and field coherence are emphasized. The material has been developed from the author's highly successful interdisciplinary course at the University of Rochester attended by science and engineering graduate students.


Spectroscopic Ellipsometry

Spectroscopic Ellipsometry

Author: Hiroyuki Fujiwara

Publisher: John Wiley & Sons

Published: 2007-09-27

Total Pages: 388

ISBN-13: 9780470060186

DOWNLOAD EBOOK

Ellipsometry is a powerful tool used for the characterization of thin films and multi-layer semiconductor structures. This book deals with fundamental principles and applications of spectroscopic ellipsometry (SE). Beginning with an overview of SE technologies the text moves on to focus on the data analysis of results obtained from SE, Fundamental data analyses, principles and physical backgrounds and the various materials used in different fields from LSI industry to biotechnology are described. The final chapter describes the latest developments of real-time monitoring and process control which have attracted significant attention in various scientific and industrial fields.


Spectroscopy and Optical Diagnostics for Gases

Spectroscopy and Optical Diagnostics for Gases

Author: Ronald K. Hanson

Publisher: Springer

Published: 2015-10-26

Total Pages: 290

ISBN-13: 3319232525

DOWNLOAD EBOOK

This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students and practitioners across a range of applied sciences including mechanical, aerospace, chemical, and materials engineering.


Vibrational Optical Activity

Vibrational Optical Activity

Author: Laurence A. Nafie

Publisher: John Wiley & Sons

Published: 2011-07-12

Total Pages: 373

ISBN-13: 1119977533

DOWNLOAD EBOOK

This unique book stands as the only comprehensive introduction to vibrational optical activity (VOA) and is the first single book that serves as a complete reference for this relatively new, but increasingly important area of molecular spectroscopy. Key features: A single-source reference on this topic that introduces, describes the background and foundation of this area of spectroscopy. Serves as a guide on how to use it to carry out applications with relevant problem solving. Depth and breadth of the subject is presented in a logical, complete and progressive fashion. Although intended as an introductory text, this book provides in depth coverage of this topic relevant to both students and professionals by taking the reader from basic theory through to practical and instrumental approaches.


The Physics of Thin Film Optical Spectra

The Physics of Thin Film Optical Spectra

Author: Olaf Stenzel

Publisher: Springer Science & Business Media

Published: 2005-10-10

Total Pages: 285

ISBN-13: 3540279059

DOWNLOAD EBOOK

The present monograph represents itself as a tutorial to the ?eld of optical properties of thin solid ?lms. It is neither a handbook for the thin ?lm prac- tioner,noranintroductiontointerferencecoatingsdesign,norareviewonthe latest developments in the ?eld. Instead, it is a textbook which shall bridge the gap between ground level knowledge on optics, electrodynamics, qu- tummechanics,andsolidstatephysicsononehand,andthemorespecialized level of knowledge presumed in typical thin ?lm optical research papers on the other hand. In writing this preface, I feel it makes sense to comment on three points, which all seem to me equally important. They arise from the following (- tually interconnected) three questions: 1. Who can bene?t from reading this book? 2. What is the origin of the particular material selection in this book? 3. Who encouraged and supported me in writing this book? Let me start with the ?rst question, the intended readership of this book. It should be of use for anybody, who is involved into the analysis of - tical spectra of a thin ?lm sample, no matter whether the sample has been prepared for optical or other applications. Thin ?lm spectroscopy may be r- evant in semiconductor physics, solar cell development, physical chemistry, optoelectronics, and optical coatings development, to give just a few ex- ples. The book supplies the reader with the necessary theoretical apparatus for understanding and modelling the features of the recorded transmission and re?ection spectra.


Spectroscopy for the Biological Sciences

Spectroscopy for the Biological Sciences

Author: Gordon G. Hammes

Publisher: John Wiley & Sons

Published: 2005-08-19

Total Pages: 192

ISBN-13: 0471733547

DOWNLOAD EBOOK

An introduction to the physical principles of spectroscopy and their applications to the biological sciences Advances in such fields as proteomics and genomics place new demands on students and professionals to be able to apply quantitative concepts to the biological phenomena that they are studying. Spectroscopy for the Biological Sciences provides students and professionals with a working knowledge of the physical chemical aspects of spectroscopy, along with their applications to important biological problems. Designed as a companion to Professor Hammes's Thermodynamics and Kinetics for the Biological Sciences, this approachable yet thorough text covers the basic principles of spectroscopy, including: * Fundamentals of spectroscopy * Electronic spectra * Circular dichroism and optical rotary dispersion * Vibration in macromolecules (IR, Raman, etc.) * Magnetic resonance * X-ray crystallography * Mass spectrometry With a minimum of mathematics and a strong focus on applications to biology, this book will prepare current and future professionals to better understand the quantitative interpretation of biological phenomena and to utilize these tools in their work.